13 research outputs found

    Energy averages and fluctuations in the decay out of superdeformed bands

    Get PDF
    We derive analytic formulae for the energy average (including the energy average of the fluctuation contribution) and variance of the intraband decay intensity of a superdeformed band. Our results may be expressed in terms of three dimensionless variables: Γ↓/ΓS\Gamma^{\downarrow}/\Gamma_S, ΓN/d\Gamma_N/d, and ΓN/(ΓS+Γ↓)\Gamma_N/(\Gamma_S+\Gamma^{\downarrow}). Here Γ↓\Gamma^{\downarrow} is the spreading width for the mixing of a superdeformed (SD) state ∣0>|0> with the normally deformed (ND) states ∣Q>|Q> whose spin is the same as ∣0>|0>'s. The ∣Q>|Q> have mean level spacing dd and mean electromagnetic decay width ΓN\Gamma_N whilst ∣0>|0> has electromagnetic decay width ΓS\Gamma_S. The average decay intensity may be expressed solely in terms of the variables Γ↓/ΓS\Gamma^{\downarrow}/\Gamma_S and ΓN/d\Gamma_N/d or, analogously to statistical nuclear reaction theory, in terms of the transmission coefficients T0(E)T_0(E) and TNT_N describing transmission from the ∣Q>|Q> to the SD band via ∣0∠|0\angle and to lower ND states. The variance of the decay intensity, in analogy with Ericson's theory of cross section fluctuations depends on an additional variable, the correlation length \Gamma_N/(\Gamma_S+\Gamma^{\downarrow})=\frac{d}{2\pi}T_N/(\Gamma_S+\Gamma^{\d ownarrow}). This suggests that analysis of an experimentally obtained variance could yield the mean level spacing dd as does analysis of the cross section autocorrelation function in compound nuclear reactions. We compare our results with those of Gu and Weidenm\"uller.Comment: revtex4, 14 pages, 4 figures, to appear in Physical Review

    Measurements of gas filled halfraum energetics at the national ignition facility using a single quad

    No full text
    Gas filled halfraum experiments were conducted at the National Ignition Facility which provided an excellent test of the tools needed to understand halfraum energetics in an ignition relevant regime. The experiments used a highly shaped laser pulse and measured large levels of backscattered laser energy. These two components challenge the ability of radiation hydrodynamic simulations to model the experiments. The results show good agreement between experimental measurements and simulations

    Neural Synchronization at Tonic-to-Bursting Transitions

    No full text
    We studied the synchronous behavior of two electrically-coupled model neurons as a function of the coupling strength when the individual neurons are tuned to different activity patterns that ranged from tonic firing via chaotic activity to burst discharges. We observe asynchronous and various synchronous states such as out-of-phase, in-phase and almost in-phase chaotic synchronization. The highest variety of synchronous states occurs at the transition from tonic firing to chaos where the highest coupling strength is also needed for in-phase synchronization which is, essentially, facilitated towards the bursting range. This demonstrates that tuning of the neuron’s internal dynamics can have significant impact on the synchronous states especially at the physiologically relevant tonic-to-bursting transitions

    Laser coupling to reduced-scale targets at NIF Early Light

    No full text
    Deposition of maximum laser energy into a small, high-Z enclosure in a short laser pulse creates a hot environment. Such targets were recently included in an experimental campaign using the first four of the 192 beams of the National Ignition Facility [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technology 26, 755 (1994)], under construction at the University of California Lawrence Livermore National Laboratory. These targets demonstrate good laser coupling, reaching a radiation temperature of 340 eV. In addition, the Raman backscatter spectrum contains features consistent with Brillouin backscatter of Raman forward scatter [A. B. Langdon and D. E. Hinkel, Physical Review Letters 89, 015003 (2002)]. Also, NIF Early Light diagnostics indicate that 20% of the direct backscatter from these reduced-scale targets is in the polarization orthogonal to that of the incident light

    X-ray flux and X-ray burnthrough experiments on reduced-scale targets at the NIF and OMEGA lasers

    No full text
    An experimental campaign to maximize radiation drive in small-scale hohlraums has been carried out at the National Ignition Facility (NIF) at the Lawerence Livermore National Laboratory (Livermore, CA, USA) and at the OMEGA laser at the Laboratory for Laser Energetics (Rochester, NY, USA). The small-scale hohlraums, laser energy, laser pulse, and diagnostics were similar at both facilities but the geometries were very different. The NIF experiments used on-axis laser beams whereas the OMEGA experiments used 19 beams in three beam cones. In the cases when the lasers coupled well and produced similar radiation drive, images of x-ray burnthrough and laser deposition indicate the pattern of plasma filling is very different

    New developments in vertebrate cytotaxonomy III. Karyology of bony fishes: A review

    No full text
    [No abstract available
    corecore