992 research outputs found

    49Cr: Towards full spectroscopy up to 4 MeV

    Full text link
    The nucleus 49Cr has been studied analysing gamma-gamma coincidences in the reaction 46Ti(alpha,n)49Cr at the bombarding energy of 12 MeV. The level scheme has been greatly extended at low excitation energy and several new lifetimes have been determined by means of the Doppler Shift Attenuation Method. Shell model calculations in the full pf configuration space reproduce well negative-parity levels. Satisfactory agreement is obtained for positive parity levels by extending the configuration space to include a nucleon-hole either in the 1d3/2 or in the 2s1/2 orbitals. A nearly one-to-one correspondence is found between experimental and theoretical levels up to an excitation energy of 4 MeV. Experimental data and shell model calculations are interpreted in terms of the Nilsson diagram and the particle-rotor model, showing the strongly coupled nature of the bands in this prolate nucleus. Nine values of K(pi) are proposed for the levels observed in this experiment. As a by-result it is shown that the values of the experimental magnetic moments in 1f7/2 nuclei are well reproduced without quenching the nucleon g-factors.Comment: 13 pages, 8 figure

    Lifetime measurements in 63^{63}Co and 65^{65}Co

    Get PDF
    Lifetimes of the 9/219/2^-_1 and 3/213/2^-_1 states in 63^{63}Co and the 9/219/2^-_1 state in 65^{65}Co were measured using the recoil distance Doppler shift and the differential decay curve methods. The nuclei were populated by multi-nucleon transfer reactions in inverse kinematics. Gamma rays were measured with the EXOGAM Ge array and the recoiling fragments were fully identified using the large-acceptance VAMOS spectrometer. The E2 transition probabilities from the 3/213/2^-_1 and 9/219/2^-_1 states to the 7/27/2^- ground state could be extracted in 63^{63}Co as well as an upper limit for the 9/217/219/2^-_1\rightarrow7/2^-_1 BB(E2) value in 65^{65}Co. The experimental results were compared to large-scale shell-model calculations in the pfpf and pfg9/2pfg_{9/2} model spaces, allowing to draw conclusions on the single-particle or collective nature of the various states.Comment: 8 pages, 8 figures, 1 table, accepted for publication in Physical Review

    Lifetime determination of excited states in Cd-106

    Get PDF
    Two separate experiments using the Differential Decay Curve Method have been performed to extract mean lifetimes of excited states in 106 Cd. The inedium-spin states of interest were populated by the Mo-98(C-12, 4n) Cd-106 reaction performed at the Wright Nuclear Structure Lab., Yale University. From this experiment, two isomeric state mean lifetimes have been deduced. The low-lying states were populated by the Mo-96(C-13, 3n)Cd-106 reaction performed at the Institut fur Kernphysik, Universitat zu Koln. The mean lifetime of the I-pi = 2(1)(+) state was deduced, tentatively, as 16.4(9) ps. This value differs from the previously accepted literature value from Coulomb excitation of 10.43(9) ps

    Observation of strong electromagnetic fields around laser-entrance holes of ignition-scale hohlraums in inertial-confinement fusion experiments at the National Ignition Facility

    Get PDF
    Energy spectra and spectrally resolved one-dimensional fluence images of self-emitted charged-fusion products (14.7 MeV D[superscript 3]He protons) are routinely measured from indirectly driven inertial-confinement fusion (ICF) experiments utilizing ignition-scaled hohlraums at the National Ignition Facility (NIF). A striking and consistent feature of these images is that the fluence of protons leaving the ICF target in the direction of the hohlraum's laser entrance holes (LEHs) is very nonuniform spatially, in contrast to the very uniform fluence of protons leaving through the hohlraum equator. In addition, the measured nonuniformities are unpredictable, and vary greatly from shot to shot. These observations were made separately at the times of shock flash and of compression burn, indicating that the asymmetry persists even at ~0.5–2.5 ns after the laser has turned off. These phenomena have also been observed in experiments on the OMEGA laser facility with energy-scaled hohlraums, suggesting that the underlying physics is similar. Comprehensive data sets provide compelling evidence that the nonuniformities result from proton deflections due to strong spontaneous electromagnetic fields around the hohlraum LEHs. Although it has not yet been possible to uniquely determine whether the fields are magnetic (B) or electric (E), preliminary analysis indicates that the strength is ~1 MG if B fields or ~10[superscript 9] V cm[superscript −1] if E fields. These measurements provide important physics insight into the ongoing ignition experiments at the NIF. Understanding the generation, evolution, interaction and dissipation of the self-generated fields may help to answer many physics questions, such as why the electron temperatures measured in the LEH region are anomalously large, and may help to validate hydrodynamic models of plasma dynamics prior to plasma stagnation in the center of the hohlraum.United States. Dept. of Energy (DE-FG52-07 NA280 59)United States. Dept. of Energy (DE-FG03-03SF22691)Lawrence Livermore National Laboratory (B543881)Lawrence Livermore National Laboratory (LD RD-08-ER-062)University of Rochester. Fusion Science Center (412761-G)General Atomics (DE-AC52-06NA 27279)Stewardship Science Graduate Fellowship (DE-FC52-08NA28752

    Assessing a forestry education: The Northern Arizona University experience

    Get PDF
    In an attempt to provide students with a strong generalist education, the faculty at Northern Arizona University\u27s School of Forestry has presented its undergraduate forestry education in a unique, integrated, team-taught approach for over 20 years. Over this same period of time, higher education has experienced profound changes. Within the discipline, the technical knowledge expected of undergraduates has expanded greatly. Simultaneously the demand for accountability in higher education has increased. Students, parents, state legislators, governing boards, and taxpayers alike have questioned the importance, relevance, and value of higher education. The so-called student-as-consumer model in higher education is but one manifestation of this increased demand for accountability. A fundamental question arises: How well does the forestry program at NAU prepare students educationally as foresters? Assessing student academic achievement with respect to educational outcomes provides one way of answering this question. Such a process can help determine how well students master a set of defined skills, knowledges, and competencies. Such an approach requires a defined set of desired educational outcomes

    Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility

    Get PDF
    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a “high-foot” laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10[superscript 16] neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.United States. Dept. of Energy (Lawrence Livermore National Laboratory Contract DE-AC52-07NA27344

    The proangiogenic capacity of polymorphonuclear neutrophils delineated by microarray technique and by measurement of neovascularization in wounded skin of CD18-deficient mice

    Get PDF
    Growing evidence supports the concept that polymorphonuclear neutrophils (PMN) are critically involved in inflammation-mediated angiogenesis which is important for wound healing and repair. We employed an oligonucleotide microarray technique to gain further insight into the molecular mechanisms underlying the proangiogenic potential of human PMN. In addition to 18 known angiogenesis-relevant genes, we detected the expression of 10 novel genes, namely midkine, erb-B2, ets-1, transforming growth factor receptor-beta(2) and -beta(3), thrombospondin, tissue inhibitor of metalloproteinase 2, ephrin A2, ephrin B2 and restin in human PMN freshly isolated from the circulation. Gene expression was confi rmed by the RT-PCR technique. In vivo evidence for the role of PMN in neovascularization was provided by studying neovascularization in a skin model of wound healing using CD18-deficient mice which lack PMN infi ltration to sites of lesion. In CD18-deficient animals, neo- vascularization was found to be signifi cantly compromised when compared with wild- type control animals which showed profound neovascularization within the granulation tissue during the wound healing process. Thus, PMN infiltration seems to facilitate inflammation mediated angiogenesis which may be a consequence of the broad spectrum of proangiogenic factors expressed by these cells. Copyright (c) 2006 S. Karger AG, Basel

    Symbolic meanings and e-learning in the workplace: The case of an intranet-based training tool

    Get PDF
    This article contributes to the debate on work-based e-learning, by unpacking the notion of ‘the learning context’ in a case where the mediating tool for training also supports everyday work. Users’ engagement with the information and communication technology tool is shown to reflect dynamic interactions among the individual, peer group, organizational and institutional levels. Also influential are professionals’ values and identity work, alongside their interpretations of espoused and emerging symbolic meanings. Discussion draws on pedagogically informed studies of e-learning and the wider organizational learning literature. More centrally, this article highlights the instrumentality of symbolic interactionism for e-learning research and explores some of the framework’s conceptual resources as applied to organizational analysis and e-learning design. </jats:p

    Shorter sleep duration and better sleep quality are associated with greater tissue density in the brain

    Get PDF
    Poor sleep quality is associated with unfavorable psychological measurements, whereas sleep duration has complex relationships with such measurements. The aim of this study was to identify the associations between microstructural properties of the brain and sleep duration/sleep quality in a young adult. The associations between mean diffusivity (MD), a measure of diffusion tensor imaging (DTI), and sleep duration/sleep quality were investigated in a study cohort of 1201 normal young adults. Positive correlations between sleep duration and MD of widespread areas of the brain, including the prefrontal cortex (PFC) and the dopaminergic systems, were identified. Negative correlations between sleep quality and MD of the widespread areas of the brain, including the PFC and the right hippocampus, were also detected. Lower MD has been previously associated with more neural tissues in the brain. Further, shorter sleep duration was associated with greater persistence and executive functioning (lower Stroop interference), whereas good sleep quality was associated with states and traits relevant to positive affects. These results suggest that bad sleep quality and longer sleep duration were associated with aberrant neurocognitive measurements in the brain in healthy young adults

    Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility

    Get PDF
    A series of cryogenic, layered deuterium-tritium (DT) implosions have produced, for the first time, fusion energy output twice the peak kinetic energy of the imploding shell. These experiments at the National Ignition Facility utilized high density carbon ablators with a three-shock laser pulse (1.5 MJ in 7.5 ns) to irradiate low gas-filled (0.3  mg/cc of helium) bare depleted uranium hohlraums, resulting in a peak hohlraum radiative temperature ∼290  eV. The imploding shell, composed of the nonablated high density carbon and the DT cryogenic layer, is, thus, driven to velocity on the order of 380  km/s resulting in a peak kinetic energy of ∼21  kJ, which once stagnated produced a total DT neutron yield of 1.9×10¹⁶ (shot N170827) corresponding to an output fusion energy of 54 kJ. Time dependent low mode asymmetries that limited further progress of implosions have now been controlled, leading to an increased compression of the hot spot. It resulted in hot spot areal density (ρr∼0.3  g/cm²) and stagnation pressure (∼360  Gbar) never before achieved in a laboratory experiment
    corecore