318 research outputs found
Concentration phase diagram of Ba(x)Sr(1-x)TiO3 solid solutions
Method of derivation of phenomenological thermodynamic potential of solid
solutions is proposed in which the interaction of the order parameters of
constituents is introduced through the account of elastic strain due to misfit
of the lattice parameters of the end-members. The validity of the method is
demonstrated for Ba(x)Sr(1-x)TiO3 system being a typical example of
ferroelectric solid solution. Its phase diagram is determined using
experimental data for the coefficients in the phenomenological potentials of
SrTiO3 and BaTiO3. In the phase diagram of the Ba(x)Sr(1-x)TiO3 system for
small Ba concentration, there are a tricritical point and two multiphase points
one of which is associated with up to 6 possible phases.Comment: 8 pages, 3 figure
Fluctuations, Higher Order Anharmonicities, and Landau Expansion for Barium Titanate
Correct phenomenological description of ferroelectric phase transitions in
barium titanate requires accounting for eighth-order terms in the free energy
expansion, in addition to the conventional sixth-order contributions. Another
unusual feature of BaTiO_3 crystal is that the coefficients B_1 and B_2 of the
terms P_x^4 and P_x^2*P_y^2 in the Landau expansion depend on the temperature.
It is shown that the temperature dependence of B_1 and B_2 may be caused by
thermal fluctuations of the polarization, provided the fourth-order
anharmonicity is anomalously small, i. e. the nonlinearity of P^4 type and
higher-order ones play comparable roles. Non-singular (non-critical)
fluctuation contributions to B_1 and B_2 are calculated in the first
approximation in sixth-order and eighth-order anharmonic constants. Both
contributions increase with the temperature, which is in agreement with
available experimental data. Moreover, the theory makes it possible to
estimate, without any additional assumptions, the ratio of fluctuation
(temperature dependent) contributions to coefficients B_1 and B_2. Theoretical
value of B_1/B_2 appears to be close to that given by experiments.Comment: 5 pages, 1 figur
High frequency polarization switching of a thin ferroelectric film
We consider both experimentally and analytically the transient oscillatory
process that arises when a rapid change in voltage is applied to a
ferroelectric thin film deposited on an substrate.
High frequency () polarization oscillations are observed
in the ferroelectric sample. These can be understood using a simple
field-polarization model. In particular we obtain analytic expressions for the
oscillation frequency and the decay time of the polarization fluctuation in
terms of the material parameters. These estimations agree well with the
experimental results
Tunability of the dielectric response of epitaxially strained SrTiO3 from first principles
The effect of in-plane strain on the nonlinear dielectric properties of
SrTiO3 epitaxial thin films is calculated using density-functional theory
within the local-density approximation. Motivated by recent experiments, the
structure, zone-center phonons, and dielectric properties with and without an
external electric field are evaluated for several misfit strains within +-3% of
the calculated cubic lattice parameter. In these calculations, the in-plane
lattice parameters are fixed, and all remaining structural parameters are
permitted to relax. The presence of an external bias is treated approximately
by applying a force to each ion proportional to the electric field. After
obtaining zero-field ground state structures for various strains, the
zone-center phonon frequencies and Born effective charges are computed,
yielding the zero-field dielectric response. The dielectric response at finite
electric field bias is obtained by computing the field dependence of the
structure and polarization using an approximate technique. The results are
compared with recent experiments and a previous phenomenological theory. The
tunability is found to be strongly dependent on the in-plane lattice parameter,
showing markedly different behavior for tensile and compressive strains. Our
results are expected to be of use for isolating the role of strain in the
tunability of real ultrathin epitaxial films.Comment: 11 pages, with postscript figures embedded. Uses REVTEX and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/ant_srti/index.htm
Theory of structural response to macroscopic electric fields in ferroelectric systems
We have developed and implemented a formalism for computing the structural
response of a periodic insulating system to a homogeneous static electric field
within density-functional perturbation theory (DFPT). We consider the
thermodynamic potentials E(R,eta,e) and F(R,eta,e) whose minimization with
respect to the internal structural parameters R and unit cell strain eta yields
the equilibrium structure at fixed electric field e and polarization P,
respectively. First-order expansion of E(R,eta,e) in e leads to a useful
approximation in which R(P) and eta(P) can be obtained by simply minimizing the
zero-field internal energy with respect to structural coordinates subject to
the constraint of a fixed spontaneous polarization P. To facilitate this
minimization, we formulate a modified DFPT scheme such that the computed
derivatives of the polarization are consistent with the discretized form of the
Berry-phase expression. We then describe the application of this approach to
several problems associated with bulk and short-period superlattice structures
of ferroelectric materials such as BaTiO3 and PbTiO3. These include the effects
of compositionally broken inversion symmetry, the equilibrium structure for
high values of polarization, field-induced structural phase transitions, and
the lattice contributions to the linear and the non-linear dielectric
constants.Comment: 19 pages, with 15 postscript figures embedded. Uses REVTEX4 and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/sai_pol/index.htm
Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall
Surprising asymmetry in the local electromechanical response across a single
antiparallel ferroelectric domain wall is reported. Piezoelectric force
microscopy is used to investigate both the in-plane and out-of- plane
electromechanical signals around domain walls in congruent and
near-stoichiometric lithium niobate. The observed asymmetry is shown to have a
strong correlation to crystal stoichiometry, suggesting defect-domain wall
interactions. A defect-dipole model is proposed. Finite element method is used
to simulate the electromechanical processes at the wall and reconstruct the
images. For the near-stoichiometric composition, good agreement is found in
both form and magnitude. Some discrepancy remains between the experimental and
modeling widths of the imaged effects across a wall. This is analyzed from the
perspective of possible electrostatic contributions to the imaging process, as
well as local changes in the material properties in the vicinity of the wall
The polarizability model for ferroelectricity in perovskite oxides
This article reviews the polarizability model and its applications to
ferroelectric perovskite oxides. The motivation for the introduction of the
model is discussed and nonlinear oxygen ion polarizability effects and their
lattice dynamical implementation outlined. While a large part of this work is
dedicated to results obtained within the self-consistent-phonon approximation
(SPA), also nonlinear solutions of the model are handled which are of interest
to the physics of relaxor ferroelectrics, domain wall motions, incommensurate
phase transitions. The main emphasis is to compare the results of the model
with experimental data and to predict novel phenomena.Comment: 55 pages, 35 figure
The Structural Phase Transition of the Relaxor Ferroelectric 68%PbMg1/3Nb2/3O3-32%PbTiO3
Neutron scattering techniques have been used to study the relaxor
ferroelectric 0.68PbMg1/3Nb2/3O3-0.32PbTiO3 denoted in this paper as
0.68PMN-0.32PT. On cooling, these relaxor ferroelectrics have a long-range
ordered ferroelectric phase and the composition is close to that at which the
ferroelectric structure changes from rhombohedral to tetragonal. It was found
that above the Burns temperature of about 600K, the transverse optic mode and
the transverse acoustic mode are strongly coupled and a model was used to
describe this coupling that gave similar parameters to those obtained for the
coupling in PMN. Below the Burns temperature additional quasi-elastic
scattering was found which increased in intensity as the sample was cooled down
to the ferroelectric transition temperature but then decreased in intensity.
This behaviour is similar to that found in PMN. This scattering is associated
with the dynamic polar nano-regions that occur below the Burns temperature. In
addition to this scattering a strictly elastic resolution limited peak was
observed that was much weaker than the corresponding peak in pure PMN and which
decreased in intensity on cooling below the ferroelectric phase whereas for
PMN, which does not have a long-range ordered ferroelectric phase, the
intensity of this component increased monotonically as the sample was cooled.
The results of our study are compared with the recent measurements of Stock et
al. [PRB 73 064107] who studied 0.4PMN-0.6PT. The results are qualitatively
consistent with the random field model developed to describe the scattering
from PMN
- …