6 research outputs found

    Clinical Perspectives on Using Remote Measurement Technology in Assessing Epilepsy, Multiple Sclerosis, and Depression: Delphi Study

    Get PDF
    Background: Multiple sclerosis (MS), epilepsy, and depression are chronic central nervous system conditions in which remote measurement technology (RMT) may offer benefits compared with usual assessment. We previously worked with clinicians, patients, and researchers to develop 13 use cases for RMT: 5 in epilepsy (seizure alert, seizure counting, risk scoring, triage support, and trend analysis), 3 in MS (detecting silent progression, detecting depression in MS, and donating data to a biobank), and 5 in depression (detecting trends, reviewing treatment, self-management, comorbid monitoring, and carer alert). Objective: In this study, we aimed to evaluate the use cases and related implementation issues with an expert panel of clinicians external to our project consortium. Methods: We used a Delphi exercise to validate the use cases and suggest a prioritization among them and to ascertain the importance of a variety of implementation issues related to RMT. The expert panel included clinicians from across Europe who were external to the project consortium. The study had 2 survey rounds (n=23 and n=17) and a follow-up interview round (n=9). Data were analyzed for consensus between participants and for stability between survey rounds. The interviews explored the reasons for answers given in the survey. Results: The findings showed high stability between rounds on questions related to specific use cases but lower stability on questions relating to wider issues around the implementation of RMT. Overall, questions on wider issues also had less consensus. All 5 use cases for epilepsy (seizure alert, seizure counting, risk scoring, triage support, and trend analysis) were considered beneficial, with consensus among participants above the a priori threshold for most questions, although use case 3 (risk scoring) was considered less likely to facilitate or catalyze care. There was very little consensus on the benefits of the use cases in MS, although this may have resulted from a higher dropout rate of MS clinicians (50%). Participants agreed that there would be benefits for all 5 of the depression use cases, although fewer questions on use case 4 (triage support) reached consensus agreement than for depression use cases 1 (detecting trends), 2 (reviewing treatment), 3 (self-management), and 5 (carer alert). The qualitative analysis revealed further insights into each use case and generated 8 themes on practical issues related to implementation. Conclusions: Overall, these findings inform the prioritization of use cases for RMT that could be developed in future work, which may include clinical trials, cost-effectiveness studies, and the commercial development of RMT products and services. Priorities for further development include the use of RMT to provide more accurate records of symptoms and treatment response than is currently possible and to provide data that could help inform patient triage and generate timely alerts for patients and carers

    Cognitive Neuroscience and Entrepreneurship: cross-disciplinary review and future potential

    No full text
    Purpose: Can insights and methods from cognitive neuroscience help to understand the distinctiveness of the entrepreneur’s brain? Whilst there is a thirst for more neuroscience studies in entrepreneurship research, empirical work has not yet taken off and thus our understanding of an entrepreneur’s brain is limited and underdeveloped. This is partly due to divergent views on the core definition of cognition between disciplines. Approach: This paper seeks to integrate cognitive neuroscience and entrepreneurship research. Through systematic literature review methodology, we build on what small work has been done as a guide for future work in entrepreneurial neuro-cognition. Findings: We critically appraise the current empirical research on entrepreneurs’ (1) impulsivity and risk-taking, (2) exploration and uncertainty, (3) emotional judgements and decision-making, and (4) interpersonal trust and social cognition. We then delve into how neuro-entrepreneurship research could be furthered by researching un-tapped areas of (5) opportunity alertness, (6) creativity, and (7) metacognition. Originality: This is the first paper to highlight the discrepancy in how cognitive neuroscience and entrepreneurship scholars define cognition, whilst offering a way forward charting new lines of enquiry and methods that integrate cognitive neuroscience and entrepreneurship research. Practical implications: This paper provides a reference point for researchers to embark on cross-disciplinary work integrating neuroscience and entrepreneurship. Social implications: Understanding the cognitive and neural processes that drive entrepreneurial thinking would generate insights for educators and policy makers seeking to support entrepreneurship

    Key Drivers and Facilitators of the Choice to Use mHealth Technology in People With Neurological Conditions:Observational Study

    No full text
    BACKGROUND: There is increasing interest in the potential uses of mobile health (mHealth) technologies, such as wearable biosensors, as supplements for the care of people with neurological conditions. However, adherence is low, especially over long periods. If people are to benefit from these resources, we need a better long-term understanding of what influences patient engagement. Previous research suggests that engagement is moderated by several barriers and facilitators, but their relative importance is unknown. OBJECTIVE: To determine preferences and the relative importance of user-generated factors influencing engagement with mHealth technologies for 2 common neurological conditions with a relapsing-remitting course: multiple sclerosis (MS) and epilepsy. METHODS: In a discrete choice experiment, people with a diagnosis of MS (n=141) or epilepsy (n=175) were asked to select their preferred technology from a series of 8 vignettes with 4 characteristics: privacy, clinical support, established benefit, and device accuracy; each of these characteristics was greater or lower in each vignette. These characteristics had previously been emphasized by people with MS and or epilepsy as influencing engagement with technology. Mixed multinomial logistic regression models were used to establish which characteristics were most likely to affect engagement. Subgroup analyses explored the effects of demographic factors (such as age, gender, and education), acceptance of and familiarity with mobile technology, neurological diagnosis (MS or epilepsy), and symptoms that could influence motivation (such as depression). RESULTS: Analysis of the responses to the discrete choice experiment validated previous qualitative findings that a higher level of privacy, greater clinical support, increased perceived benefit, and better device accuracy are important to people with a neurological condition. Accuracy was perceived as the most important factor, followed by privacy. Clinical support was the least valued of the attributes. People were prepared to trade a modest amount of accuracy to achieve an improvement in privacy, but less likely to make this compromise for other factors. The type of neurological condition (epilepsy or MS) did not influence these preferences, nor did the age, gender, or mental health status of the participants. Those who were less accepting of technology were the most concerned about privacy and those with a lower level of education were prepared to trade accuracy for more clinical support. CONCLUSIONS: For people with neurological conditions such as epilepsy and MS, accuracy (ie, the ability to detect symptoms) is of the greatest interest. However, there are individual differences, and people who are less accepting of technology may need far greater reassurance about data privacy. People with lower levels of education value greater clinician involvement. These patient preferences should be considered when designing mHealth technologies

    The SunBEAm birth cohort: Protocol design

    No full text
    Background: Food allergy (FA) and atopic dermatitis (AD) are common conditions that often present in the first year of life. Identification of underlying mechanisms and environmental determinants of FA and AD is essential to develop and implement effective prevention and treatment strategies. Objectives: We sought to describe the design of the Systems Biology of Early Atopy (SunBEAm) birth cohort. Methods: Funded by the National Institute of Allergy and Infectious Diseases (NIAID) and administered through the Consortium for Food Allergy Research (CoFAR), SunBEAm is a US population-based, multicenter birth cohort that enrolls pregnant mothers, fathers, and their newborns and follows them to 3 years. Questionnaire and biosampling strategies were developed to apply a systems biology approach to identify environmental, immunologic, and multiomic determinants of AD, FA, and other allergic outcomes. Results: Enrollment is currently underway. On the basis of an estimated FA prevalence of 6%, the enrollment goal is 2500 infants. AD is defined on the basis of questionnaire and assessment, and FA is defined by an algorithm combining history and testing. Although any FA will be recorded, we focus on the diagnosis of egg, milk, and peanut at 5 months, adding wheat, soy, cashew, hazelnut, walnut, codfish, shrimp, and sesame starting at 12 months. Sampling includes blood, hair, stool, dust, water, tape strips, skin swabs, nasal secretions, nasal swabs, saliva, urine, functional aspects of the skin, and maternal breast milk and vaginal swabs. Conclusions: The SunBEAm birth cohort will provide a rich repository of data and specimens to interrogate mechanisms and determinants of early allergic outcomes, with an emphasis on FA, AD, and systems biology
    corecore