7 research outputs found

    An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge

    Get PDF
    There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups

    Autosomal Dominant Pseudohypoaldosteronism Type 1 in an Infant with Salt Wasting Crisis Associated with Urinary Tract Infection and Obstructive Uropathy

    Get PDF
    Type 1 pseudohypoaldosteronism (PHA1) is a salt wasting syndrome caused by renal resistance to aldosterone. Primary renal PHA1 or autosomal dominant PHA1 is caused by mutations in mineralocorticoids receptor gene (NR3C2), while secondary PHA1 is frequently associated with urinary tract infection (UTI) and/or urinary tract malformations (UTM). We report a 14-day-old male infant presenting with severe hyperkalemia, hyponatremic dehydration, metabolic acidosis, and markedly elevated serum aldosterone level, initially thought to have secondary PHA1 due to the associated UTI and posterior urethral valves. His serum aldosterone remained elevated at 5 months of age, despite resolution of salt wasting symptoms. Chromosomal microarray analysis revealed a deletion of exons 3–5 in NR3C2 in the patient and his asymptomatic mother who also had elevated serum aldosterone level, confirming that he had primary or autosomal dominant PHA1. Our case raises the possibility that some patients with secondary PHA1 attributed to UTI and/or UTM may instead have primary autosomal dominant PHA1, for which genetic testing should be considered to identify the cause, determine future recurrence risk, and possibly prevent the life-threatening salt wasting in a subsequent family member. Future clinical research is needed to investigate the potential overlapping between secondary PHA1 and primary autosomal dominant PHA1

    Facing the Challenge of Genetic Counselors\u27 Need for Rapid Continuing Education About Genomic Technologies

    Get PDF
    The last couple of decades have seen the rapid advancement of genomic technologies (GT) and their equally rapid adoption into clinical testing. Regardless of specialty, all genetic counselors are unified by the fundamental goal to aid in diagnosing patient\u27s genetic disease underscoring the importance for genetic counselors to maintain an in-depth understanding of GT. The National Society of Genetic Counselors’ (NSGC) GT Special Interest Group conducted an online survey of NSGC members to assess current genomic technologies knowledge gaps. A total of 171 individuals from a variety of primary work settings completed the survey sufficiently to be included in the analysis. The majority of respondents received their degree in genetic counseling in more recent years (2000–2015). On average across all technologies, \u3e70% of respondents deemed knowledge of GTs as important for successful job performance, 55% responded that additional job training in GTs is needed to successfully perform job functions, and only 28% responded that graduate training in GTs was good. Overall, the data show that participating genetic counselors perceive that their knowledge of GTs is inadequate while it is a key component of their jobs. These results have implications both for training programs and for continuing education efforts. These data can be used as a starting point for additional research into GT educational needs of genetic counselors

    Identification of a Recurrent Microdeletion at 17q23.1q23.2 Flanked by Segmental Duplications Associated with Heart Defects and Limb Abnormalities

    Get PDF
    Segmental duplications, which comprise ∼5%–10% of the human genome, are known to mediate medically relevant deletions, duplications, and inversions through nonallelic homologous recombination (NAHR) and have been suggested to be hot spots in chromosome evolution and human genomic instability. We report seven individuals with microdeletions at 17q23.1q23.2, identified by microarray-based comparative genomic hybridization (aCGH). Six of the seven deletions are ∼2.2 Mb in size and flanked by large segmental duplications of >98% sequence identity and in the same orientation. One of the deletions is ∼2.8 Mb in size and is flanked on the distal side by a segmental duplication, whereas the proximal breakpoint falls between segmental duplications. These characteristics suggest that NAHR mediated six out of seven of these rearrangements. These individuals have common features, including mild to moderate developmental delay (particularly speech delay), microcephaly, postnatal growth retardation, heart defects, and hand, foot, and limb abnormalities. Although all individuals had at least mild dysmorphic facial features, there was no characteristic constellation of features that would elicit clinical suspicion of a specific disorder. The identification of common clinical features suggests that microdeletions at 17q23.1q23.2 constitute a novel syndrome. Furthermore, the inclusion in the minimal deletion region of TBX2 and TBX4, transcription factors belonging to a family of genes implicated in a variety of developmental pathways including those of heart and limb, suggests that these genes may play an important role in the phenotype of this emerging syndrome

    Assessment of 2q23.1 Microdeletion Syndrome Implicates MBD5 as a Single Causal Locus of Intellectual Disability, Epilepsy, and Autism Spectrum Disorder

    Get PDF
    Persons with neurodevelopmental disorders or autism spectrum disorder (ASD) often harbor chromosomal microdeletions, yet the individual genetic contributors within these regions have not been systematically evaluated. We established a consortium of clinical diagnostic and research laboratories to accumulate a large cohort with genetic alterations of chromosomal region 2q23.1 and acquired 65 subjects with microdeletion or translocation. We sequenced translocation breakpoints; aligned microdeletions to determine the critical region; assessed effects on mRNA expression; and examined medical records, photos, and clinical evaluations. We identified a single gene, methyl-CpG-binding domain 5 (MBD5), as the only locus that defined the critical region. Partial or complete deletion of MBD5 was associated with haploinsufficiency of mRNA expression, intellectual disability, epilepsy, and autistic features. Fourteen alterations, including partial deletions of noncoding regions not typically captured or considered pathogenic by current diagnostic screening, disrupted MBD5 alone. Expression profiles and clinical characteristics were largely indistinguishable between MBD5-specific alteration and deletion of the entire 2q23.1 interval. No copy-number alterations of MBD5 were observed in 7878 controls, suggesting MBD5 alterations are highly penetrant. We surveyed MBD5 coding variations among 747 ASD subjects compared to 2043 non-ASD subjects analyzed by whole-exome sequencing and detected an association with a highly conserved methyl-CpG-binding domain missense variant, p.79Gly>Glu (c.236G>A) (p = 0.012). These results suggest that genetic alterations of MBD5 cause features of 2q23.1 microdeletion syndrome and that this epigenetic regulator significantly contributes to ASD risk, warranting further consideration in research and clinical diagnostic screening and highlighting the importance of chromatin remodeling in the etiology of these complex disorders

    Exonic deletions in AUTS2 cause a syndromic form of intellectual disability and suggest a critical role for the C terminus.

    Full text link
    Genomic rearrangements involving AUTS2 (7q11.22) are associated with autism and intellectual disability (ID), although evidence for causality is limited. By combining the results of diagnostic testing of 49,684 individuals, we identified 24 microdeletions that affect at least one exon of AUTS2, as well as one translocation and one inversion each with a breakpoint within the AUTS2 locus. Comparison of 17 well-characterized individuals enabled identification of a variable syndromic phenotype including ID, autism, short stature, microcephaly, cerebral palsy, and facial dysmorphisms. The dysmorphic features were more pronounced in persons with 3'AUTS2 deletions. This part of the gene is shown to encode a C-terminal isoform (with an alternative transcription start site) expressed in the human brain. Consistent with our genetic data, suppression of auts2 in zebrafish embryos caused microcephaly that could be rescued by either the full-length or the C-terminal isoform of AUTS2. Our observations demonstrate a causal role of AUTS2 in neurocognitive disorders, establish a hitherto unappreciated syndromic phenotype at this locus, and show how transcriptional complexity can underpin human pathology. The zebrafish model provides a valuable tool for investigating the etiology of AUTS2 syndrome and facilitating gene-function analysis in the future
    corecore