2 research outputs found

    GCNIDS: Graph Convolutional Network-Based Intrusion Detection System for CAN Bus

    Full text link
    The Controller Area Network (CAN) bus serves as a standard protocol for facilitating communication among various electronic control units (ECUs) within contemporary vehicles. However, it has been demonstrated that the CAN bus is susceptible to remote attacks, which pose risks to the vehicle's safety and functionality. To tackle this concern, researchers have introduced intrusion detection systems (IDSs) to identify and thwart such attacks. In this paper, we present an innovative approach to intruder detection within the CAN bus, leveraging Graph Convolutional Network (GCN) techniques as introduced by Zhang, Tong, Xu, and Maciejewski in 2019. By harnessing the capabilities of deep learning, we aim to enhance attack detection accuracy while minimizing the requirement for manual feature engineering. Our experimental findings substantiate that the proposed GCN-based method surpasses existing IDSs in terms of accuracy, precision, and recall. Additionally, our approach demonstrates efficacy in detecting mixed attacks, which are more challenging to identify than single attacks. Furthermore, it reduces the necessity for extensive feature engineering and is particularly well-suited for real-time detection systems. To the best of our knowledge, this represents the pioneering application of GCN to CAN data for intrusion detection. Our proposed approach holds significant potential in fortifying the security and safety of modern vehicles, safeguarding against attacks and preventing them from undermining vehicle functionality

    HeteroEdge: Addressing Asymmetry in Heterogeneous Collaborative Autonomous Systems

    Full text link
    Gathering knowledge about surroundings and generating situational awareness for IoT devices is of utmost importance for systems developed for smart urban and uncontested environments. For example, a large-area surveillance system is typically equipped with multi-modal sensors such as cameras and LIDARs and is required to execute deep learning algorithms for action, face, behavior, and object recognition. However, these systems face power and memory constraints due to their ubiquitous nature, making it crucial to optimize data processing, deep learning algorithm input, and model inference communication. In this paper, we propose a self-adaptive optimization framework for a testbed comprising two Unmanned Ground Vehicles (UGVs) and two NVIDIA Jetson devices. This framework efficiently manages multiple tasks (storage, processing, computation, transmission, inference) on heterogeneous nodes concurrently. It involves compressing and masking input image frames, identifying similar frames, and profiling devices to obtain boundary conditions for optimization.. Finally, we propose and optimize a novel parameter split-ratio, which indicates the proportion of the data required to be offloaded to another device while considering the networking bandwidth, busy factor, memory (CPU, GPU, RAM), and power constraints of the devices in the testbed. Our evaluations captured while executing multiple tasks (e.g., PoseNet, SegNet, ImageNet, DetectNet, DepthNet) simultaneously, reveal that executing 70% (split-ratio=70%) of the data on the auxiliary node minimizes the offloading latency by approx. 33% (18.7 ms/image to 12.5 ms/image) and the total operation time by approx. 47% (69.32s to 36.43s) compared to the baseline configuration (executing on the primary node)
    corecore