2 research outputs found

    Thermal management of machine compartment in a built-in refrigerator

    No full text
    In general a multi-door refrigerator machine compartment comprises of fan, condenser, compressor, control box, drain tray, and drain tubes. The performance of machine compartment depends upon the efficiency of heat extraction or heat exchange from heat generating components such as condenser and compressor. The efficiency of heat exchange can be improved by addressing two major factors, namely (1) Air bypass and (2) Hot air recirculation. The hot air recirculation in the machine compartment for builtin multi-door refrigerator configuration is the focus of this study. The results from Computational Fluid Dynamics (CFD) simulations show that efficiency of heat exchange for built-in application is lower than that for free-standing configuration. Recirculation of hot air and reduction in airflow are the two major factors which contribute towards the variation in machine compartment performance. The CFD simulations were coupled with Partial Factorial Design of Experiment (DoE) approach to systematically investigate the effect of variables such as (a) side gap and top gap between kitchen cabinetry and the refrigerator, (b) the baffle/flap (i.e. back and bottom of machine compartment) on the performance effectiveness of machine compartment. The results of the simulation provided critical design improvement directions resulting in performance improvement. Furthermore, the CFD simulation results were also compared to test data and the results compared favourably

    Thermal management of machine compartment in a built-in refrigerator

    No full text
    In general a multi-door refrigerator machine compartment comprises of fan, condenser, compressor, control box, drain tray, and drain tubes. The performance of machine compartment depends upon the efficiency of heat extraction or heat exchange from heat generating components such as condenser and compressor. The efficiency of heat exchange can be improved by addressing two major factors, namely (1) Air bypass and (2) Hot air recirculation. The hot air recirculation in the machine compartment for builtin multi-door refrigerator configuration is the focus of this study. The results from Computational Fluid Dynamics (CFD) simulations show that efficiency of heat exchange for built-in application is lower than that for free-standing configuration. Recirculation of hot air and reduction in airflow are the two major factors which contribute towards the variation in machine compartment performance. The CFD simulations were coupled with Partial Factorial Design of Experiment (DoE) approach to systematically investigate the effect of variables such as (a) side gap and top gap between kitchen cabinetry and the refrigerator, (b) the baffle/flap (i.e. back and bottom of machine compartment) on the performance effectiveness of machine compartment. The results of the simulation provided critical design improvement directions resulting in performance improvement. Furthermore, the CFD simulation results were also compared to test data and the results compared favourably
    corecore