1,759 research outputs found
Bowen ratio estimates of evapotranspiration for stands on the Virgin River in Southern Nevada
A Bowen ratio energy balance was conducted over a Tamarix ramosissima (saltcedar) stand growing in a riparian corridor along the Virgin River in southern Nevada. Measurements in two separate years were compared and contrasted on the basis of changes in growing conditions. In 1994, a drought year, record high temperatures, dry winds, and a falling water table caused partial wilt of outer smaller twigs in the canopy of many trees in the stand around the Bowen tower. Subsequently, evapotranspiration (ET) estimates declined dramatically over a 60‐day period (11 mm d−1 tod−1). In 1995, the Virgin River at the Bowen tower area changed its course, hydrologically isolating the Tamarix stand in the vicinity of the tower. In 1996, a 25% canopy loss was visually estimated for the Tamarix growing in the area of the tower. Higher soil temperatures relative to air temperatures were recorded in 1996 in response to this loss in canopy. With a more open canopy, thermally induced turbulence was observed in 1996. On day 160 of 1996, a 28°C rise over a 9‐hour period was correlated with increased wind speeds of greater than 4 m s−1. Subsequently, higher ET estimates were made in 1996 compared to 1994 (145 cm versus 75 cm). However, the energy balance was dominated by advection in 1996, with latent energy flux exceeding net radiation 65% of the measurement days compared to only 11% in 1994. We believe this advection was on a scale of the floodplain (hundreds of meters) as opposed to regional advection, since the majority of wind (90%) was in a N–S direction along the course of the river, and that a more open canopy allowed the horizontal transfer of energy into the Tamarix stand at the Bowen tower. Our results suggest that Tamarix has the potential to be both a low water user and a high water user, depending on moisture availability, canopy development, and atmospheric demand, and that advection can dominate energy balances and ET in aridland riparian zones such as the Virgin River
Theories of Reference: What Was the Question?
The new theory of reference has won popularity. However, a number of noted philosophers have also attempted to reply to the critical arguments of Kripke and others, and aimed to vindicate the description theory of reference. Such responses are often based on ingenious novel kinds of descriptions, such as rigidified descriptions, causal descriptions, and metalinguistic descriptions. This prolonged debate raises the doubt whether different parties really have any shared understanding of what the central question of the philosophical theory of reference is: what is the main question to which descriptivism and the causal-historical theory have presented competing answers. One aim of the paper is to clarify this issue. The most influential objections to the new theory of reference are critically reviewed. Special attention is also paid to certain important later advances in the new theory of reference, due to Devitt and others
Quantum information transport to multiple receivers
The importance of transporting quantum information and entanglement with high
fidelity cannot be overemphasized. We present a scheme based on adiabatic
passage that allows for transportation of a qubit, operator measurements and
entanglement, using a 1-D array of quantum sites with a single sender (Alice)
and multiple receivers (Bobs). Alice need not know which Bob is the receiver,
and if several Bobs try to receive the signal, they obtain a superposition
state which can be used to realize two-qubit operator measurements for the
generation of maximally entangled states.Comment: Modified in view of referee's comments, new author added, natural
scheme for operator measurements identified, hence W state preparation
replaced with GHZ state preparation via operator measurements. 4 pages, 3
figure
Cross-level Validation of Topological Quantum Circuits
Quantum computing promises a new approach to solving difficult computational
problems, and the quest of building a quantum computer has started. While the
first attempts on construction were succesful, scalability has never been
achieved, due to the inherent fragile nature of the quantum bits (qubits). From
the multitude of approaches to achieve scalability topological quantum
computing (TQC) is the most promising one, by being based on an flexible
approach to error-correction and making use of the straightforward
measurement-based computing technique. TQC circuits are defined within a large,
uniform, 3-dimensional lattice of physical qubits produced by the hardware and
the physical volume of this lattice directly relates to the resources required
for computation. Circuit optimization may result in non-intuitive mismatches
between circuit specification and implementation. In this paper we introduce
the first method for cross-level validation of TQC circuits. The specification
of the circuit is expressed based on the stabilizer formalism, and the
stabilizer table is checked by mapping the topology on the physical qubit
level, followed by quantum circuit simulation. Simulation results show that
cross-level validation of error-corrected circuits is feasible.Comment: 12 Pages, 5 Figures. Comments Welcome. RC2014, Springer Lecture Notes
on Computer Science (LNCS) 8507, pp. 189-200. Springer International
Publishing, Switzerland (2014), Y. Shigeru and M.Shin-ichi (Eds.
- …
