714 research outputs found

    Theories of Reference: What Was the Question?

    Get PDF
    The new theory of reference has won popularity. However, a number of noted philosophers have also attempted to reply to the critical arguments of Kripke and others, and aimed to vindicate the description theory of reference. Such responses are often based on ingenious novel kinds of descriptions, such as rigidified descriptions, causal descriptions, and metalinguistic descriptions. This prolonged debate raises the doubt whether different parties really have any shared understanding of what the central question of the philosophical theory of reference is: what is the main question to which descriptivism and the causal-historical theory have presented competing answers. One aim of the paper is to clarify this issue. The most influential objections to the new theory of reference are critically reviewed. Special attention is also paid to certain important later advances in the new theory of reference, due to Devitt and others

    Diet: Charina bottae

    Get PDF

    Integration of highly probabilistic sources into optical quantum architectures: perpetual quantum computation

    Full text link
    In this paper we introduce a design for an optical topological cluster state computer constructed exclusively from a single quantum component. Unlike previous efforts we eliminate the need for on demand, high fidelity photon sources and detectors and replace them with the same device utilised to create photon/photon entanglement. This introduces highly probabilistic elements into the optical architecture while maintaining complete specificity of the structure and operation for a large scale computer. Photons in this system are continually recycled back into the preparation network, allowing for a arbitrarily deep 3D cluster to be prepared using a comparatively small number of photonic qubits and consequently the elimination of high frequency, deterministic photon sources.Comment: 19 pages, 13 Figs (2 Appendices with additional Figs.). Comments welcom

    Diet: Charina bottae

    Get PDF

    Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array

    Full text link
    In this paper, we explore the relationship between the width of a qubit lattice constrained in one dimension and physical thresholds for scalable, fault-tolerant quantum computation. To circumvent the traditionally low thresholds of small fixed-width arrays, we deliberately engineer an error bias at the lowest level of encoding using the surface code. We then address this engineered bias at a higher level of encoding using a lattice-surgery surface code bus that exploits this bias, or a repetition code to make logical qubits with unbiased errors out of biased surface code qubits. Arbitrarily low error rates can then be reached by further concatenating with other codes, such as Steane [[7,1,3]] code and the [[15,7,3]] CSS code. This enables a scalable fixed-width quantum computing architecture on a square qubit lattice that is only 19 qubits wide, given physical qubits with an error rate of 8.0×10−48.0\times 10^{-4}. This potentially eases engineering issues in systems with fine qubit pitches, such as quantum dots in silicon or gallium arsenide.Comment: 34 pages, 19 figure

    Limitations of student-driven formative assessment in a clinical clerkship. A randomised controlled trial

    Get PDF
    Background Teachers strive to motivate their students to be self-directed learners. One of the methods used is to provide online formative assessment material. The concept of formative assessment and use of these processes is heavily promoted, despite limited evidence as to their efficacy.Methods Fourth year medical students, in their first year of clinical work were divided into four groups. In addition to the usual clinical material, three of the groups were provided with some form of supplementary learning material. For two groups, this was provided as online formative assessment. The amount of time students spent on the supplementary material was measured, their opinion on learning methods was surveyed, and their performance in summative exams at the end of their surgical attachments was measured.Results The performance of students was independent of any educational intervention imposed by this study. Despite its ready availability and promotion, student use of the online formative tools was poor.Conclusion Formative learning is an ideal not necessarily embraced by students. If formative assessment is to work students need to be encouraged to participate, probably by implementing some form of summative assessment.Edward J Palmer and Peter G Devit

    Effects of imperfections for Shor's factorization algorithm

    Full text link
    We study effects of imperfections induced by residual couplings between qubits on the accuracy of Shor's algorithm using numerical simulations of realistic quantum computations with up to 30 qubits. The factoring of numbers up to N=943 show that the width of peaks, which frequencies allow to determine the factors, grow exponentially with the number of qubits. However, the algorithm remains operational up to a critical coupling strength Ï”c\epsilon_c which drops only polynomially with log⁥2N\log_2 N. The numerical dependence of Ï”c\epsilon_c on log⁥2N\log_2 N is explained by analytical estimates that allows to obtain the scaling for functionality of Shor's algorithm on realistic quantum computers with a large number of qubits.Comment: 10 pages, 10 figures, 1 table. Added references and new data. Erratum added as appendix. 1 Figure and 1 Table added. Research is available at http://www.quantware.ups-tlse.fr

    Precision characterisation of two-qubit Hamiltonians via entanglement mapping

    Full text link
    We show that the general Heisenberg Hamiltonian with non-uniform couplings can be characterised by mapping the entanglement it generates as a function of time. Identification of the Hamiltonian in this way is possible as the coefficients of each operator control the oscillation frequencies of the entanglement function. The number of measurements required to achieve a given precision in the Hamiltonian parameters is determined and an efficient measurement strategy designed. We derive the relationship between the number of measurements, the resulting precision and the ultimate discrete error probability generated by a systematic mis-characterisation, when implementing two-qubit gates for quantum computing.Comment: 6 Pages, 3 figure
    • 

    corecore