20 research outputs found
Deep Object-Centric Representations for Generalizable Robot Learning
Robotic manipulation in complex open-world scenarios requires both reliable
physical manipulation skills and effective and generalizable perception. In
this paper, we propose a method where general purpose pretrained visual models
serve as an object-centric prior for the perception system of a learned policy.
We devise an object-level attentional mechanism that can be used to determine
relevant objects from a few trajectories or demonstrations, and then
immediately incorporate those objects into a learned policy. A task-independent
meta-attention locates possible objects in the scene, and a task-specific
attention identifies which objects are predictive of the trajectories. The
scope of the task-specific attention is easily adjusted by showing
demonstrations with distractor objects or with diverse relevant objects. Our
results indicate that this approach exhibits good generalization across object
instances using very few samples, and can be used to learn a variety of
manipulation tasks using reinforcement learning