106 research outputs found
Digital image modeling using Pickard random fields
This paper outlines a modeling technique for digital images which relies on Markov random fields proposed by Pickard for the
purpose of representing fuzzy contextual concepts such as "the uniformity of a region" or "the continuity of a contour" . We
develop a maximum likelihood estimation technique which is a straightforward generalization of an approach which is used quite
extensively in speech recognition circles . Next, we outline two nonsupervised parameter estimation techniques which enable us to
infer the model parameters front actual imagery data. We offer a number of practical examples providing evidence that our
approach is well suited to handle problems of image restauration and/or segmentation .Dans cet article, nous développons un modèle d'image qui fait appel aux champs aléatoires markoviens de Pickard dans le
but de modéliser des notions contextuelles aussi vagues et imprécises que « l'uniformité d'une région » ou « la continuité du
bord d'un objet ». Nous décrivons une méthode d'estimation par maximum de vraisemblance a posteriori obtenue par une
généralisation simple d'une méthode largement utilisée dans le contexte unidimensionel de la reconnaissance de la parole .
Nous développons deux méthodes d'estimation non supervisée des paramètres du modèle et nous montrons au moyen de
plusieurs exemples que notre technique permet de traiter avec succès des problèmes de restauration et de segmentation
d'images digitales à niveaux de gris .Dans cet article, nous développons un modèle d'image qui fait appel aux champs aléatoires markoviens de Pickard dans le
but de modéliser des notions contextuelles aussi vagues et imprécises que « l'uniformité d'une région » ou « la continuité du
bord d'un objet ». Nous décrivons une méthode d'estimation par maximum de vraisemblance a posteriori obtenue par une
généralisation simple d'une méthode largement utilisée dans le contexte unidimensionel de la reconnaissance de la parole .
Nous développons deux méthodes d'estimation non supervisée des paramètres du modèle et nous montrons au moyen de
plusieurs exemples que notre technique permet de traiter avec succès des problèmes de restauration et de segmentation
d'images digitales Ă niveaux de gris
Data mining: a tool for detecting cyclical disturbances in supply networks.
Disturbances in supply chains may be either exogenous or endogenous. The ability automatically to detect, diagnose, and distinguish between the causes of disturbances is of prime importance to decision makers in order to avoid uncertainty. The spectral principal component analysis (SPCA) technique has been utilized to distinguish between real and rogue disturbances in a steel supply network. The data set used was collected from four different business units in the network and consists of 43 variables; each is described by 72 data points. The present paper will utilize the same data set to test an alternative approach to SPCA in detecting the disturbances. The new approach employs statistical data pre-processing, clustering, and classification learning techniques to analyse the supply network data. In particular, the incremental k-means
clustering and the RULES-6 classification rule-learning algorithms, developed by the present authors’ team, have been applied to identify important patterns in the data set. Results show that the proposed approach has the capability automatically to detect and characterize network-wide cyclical disturbances and generate hypotheses about their root cause
Emotion Recognition using Wireless Signals
This paper demonstrates a new technology that can infer a person's emotions from RF signals reflected off his body. EQ-Radio transmits an RF signal and analyzes its reflections off a person's body to recognize his emotional state (happy, sad, etc.). The key enabler underlying EQ-Radio is a new algorithm for extracting the individual heartbeats from the wireless signal at an accuracy comparable to on-body ECG monitors. The resulting beats are then used to compute emotion-dependent features which feed a machine-learning emotion classifier. We describe the design and implementation of EQ-Radio, and demonstrate through a user study that its emotion recognition accuracy is on par with state-of-the-art emotion recognition systems that require a person to be hooked to an ECG monitor. Keywords: Wireless Signals; Wireless Sensing; Emotion Recognition;
Affective Computing; Heart Rate VariabilityNational Science Foundation (U.S.)United States. Air Forc
Single Channel Music Sound Separation Based on Spectrogram Decomposition and Note Classification
Separating multiple music sources from a single channel mixture is a challenging problem. We present a new approach to this problem based on non-negative matrix factorization (NMF) and note classification, assuming that the instruments used to play the sound signals are known a priori. The spectrogram of the mixture signal is first decomposed into building components (musical notes) using an NMF algorithm. The Mel frequency cepstrum coefficients (MFCCs) of both the decomposed components and the signals in the training dataset are extracted. The mean squared errors (MSEs) between the MFCC feature space of the decomposed music component and those of the training signals are used as the similarity measures for the decomposed music notes. The notes are then labelled to the corresponding type of instruments by the K nearest neighbors (K-NN) classification algorithm based on the MSEs. Finally, the source signals are reconstructed from the classified notes and the weighting matrices obtained from the NMF algorithm. Simulations are provided to show the performance of the proposed system. © 2011 Springer-Verlag Berlin Heidelberg
Pattern Recognition Based Speed Forecasting Methodology for Urban Traffic Network
A full methodology of short-term traffic prediction is proposed for urban road traffic network via Artificial Neural Network (ANN). The goal of the forecasting is to provide speed estimation forward by 5, 15 and 30 min. Unlike similar research results in this field, the investigated method aims to predict traffic speed for signalized urban road links and not for highway or arterial roads. The methodology contains an efficient feature selection algorithm in order to determine the appropriate input parameters required for neural network training. As another contribution of the paper, a built-in incomplete data handling is provided as input data (originating from traffic sensors or Floating Car Data (FCD)) might be absent or biased in practice. Therefore, input data handling can assure a robust operation of speed forecasting also in case of missing data. The proposed algorithm is trained, tested and analysed in a test network built-up in a microscopic traffic simulator by using daily course of real-world traffic
MCMC implementation for Bayesian hidden semi-Markov models with illustrative applications
Copyright © Springer 2013. The final publication is available at Springer via http://dx.doi.org/10.1007/s11222-013-9399-zHidden Markov models (HMMs) are flexible, well established models useful in a diverse range of applications.
However, one potential limitation of such models lies in their inability to explicitly structure the holding times of each hidden state. Hidden semi-Markov models (HSMMs) are more useful in the latter respect as they incorporate additional temporal structure by explicit modelling of the holding times. However, HSMMs have generally received less attention in the literature, mainly due to their intensive computational requirements. Here a Bayesian implementation of HSMMs is presented. Recursive algorithms are proposed in conjunction with Metropolis-Hastings in such a way as to avoid sampling from the distribution of the hidden state sequence in the MCMC sampler. This provides a computationally tractable estimation framework for HSMMs avoiding the limitations associated with the conventional EM algorithm regarding model flexibility. Performance of the proposed implementation is demonstrated through simulation experiments as well as an illustrative application relating to recurrent failures in a network of underground water pipes where random effects are also included into the HSMM to allow for pipe heterogeneity
Differentiation of Gram-Negative Bacterial Aerosol Exposure Using Detected Markers in Bronchial-Alveolar Lavage Fluid
The identification of biosignatures of aerosol exposure to pathogens has the potential to provide useful diagnostic information. In particular, markers of exposure to different types of respiratory pathogens may yield diverse sets of markers that can be used to differentiate exposure. We examine a mouse model of aerosol exposure to known Gram negative bacterial pathogens, Francisella tularensis novicida and Pseudomonas aeruginosa. Mice were subjected to either a pathogen or control exposure and bronchial alveolar lavage fluid (BALF) was collected at four and twenty four hours post exposure. Small protein and peptide markers within the BALF were detected by matrix assisted laser desorption/ionization (MALDI) mass spectrometry (MS) and analyzed using both exploratory and predictive data analysis methods; principle component analysis and degree of association. The markers detected were successfully used to accurately identify the four hour exposed samples from the control samples. This report demonstrates the potential for small protein and peptide marker profiles to identify aerosol exposure in a short post-exposure time frame
Gene selection for classification of microarray data based on the Bayes error
<p>Abstract</p> <p>Background</p> <p>With DNA microarray data, selecting a compact subset of discriminative genes from thousands of genes is a critical step for accurate classification of phenotypes for, e.g., disease diagnosis. Several widely used gene selection methods often select top-ranked genes according to their individual discriminative power in classifying samples into distinct categories, without considering correlations among genes. A limitation of these gene selection methods is that they may result in gene sets with some redundancy and yield an unnecessary large number of candidate genes for classification analyses. Some latest studies show that incorporating gene to gene correlations into gene selection can remove redundant genes and improve classification accuracy.</p> <p>Results</p> <p>In this study, we propose a new method, Based Bayes error Filter (BBF), to select relevant genes and remove redundant genes in classification analyses of microarray data. The effectiveness and accuracy of this method is demonstrated through analyses of five publicly available microarray datasets. The results show that our gene selection method is capable of achieving better accuracies than previous studies, while being able to effectively select relevant genes, remove redundant genes and obtain efficient and small gene sets for sample classification purposes.</p> <p>Conclusion</p> <p>The proposed method can effectively identify a compact set of genes with high classification accuracy. This study also indicates that application of the Bayes error is a feasible and effective wayfor removing redundant genes in gene selection.</p
- …