12 research outputs found

    Immunization of Mice with Anthrax Protective Antigen Limits Cardiotoxicity but Not Hepatotoxicity Following Lethal Toxin Challenge

    Get PDF
    Protective immunity against anthrax is inferred from measurement of vaccine antigen-specific neutralizing antibody titers in serum samples. In animal models, in vivo challenges with toxin and/or spores can also be performed. However, neither of these approaches considers toxin-induced damage to specific organ systems. It is therefore important to determine to what extent anthrax vaccines and existing or candidate adjuvants can provide organ-specific protection against intoxication. We therefore compared the ability of Alum, CpG DNA and the CD1d ligand alpha-galactosylceramide (alphaGC) to enhance protective antigen-specific antibody titers, to protect mice against challenge with lethal toxin, and to block cardiotoxicity and hepatotoxicity. By measurement of serum cardiac Troponin I (cTnI), and hepatic alanine aminotransferase (ALT), and aspartate aminotransferase (AST), it was apparent that neither vaccine modality prevented hepatic intoxication, despite high Ab titers and ultimate survival of the subject. In contrast, cardiotoxicity was greatly diminished by prior immunization. This shows that a vaccine that confers survival following toxin exposure may still have an associated morbidity. We propose that organ-specific intoxication should be monitored routinely during research into new vaccine modalities

    Regulation of Anthrax Toxin-Specific Antibody Titers by Natural Killer T Cell-Derived IL-4 and IFNγ

    Get PDF
    Activation of Natural Killer-like T cells (NKT) with the CD1d ligand α-GC leads to enhanced production of anthrax toxin protective Ag (PA)-neutralizing Abs, yet the underlying mechanism for this adjuvant effect is not known. In the current study we examined the role of Th1 and Th2 type responses in NKT-mediated enhancement of antibody responses to PA. First, the contribution of IL-4 and IFNγ to the production of PA-specific toxin-neutralizing Abs was examined. By immunizing C57Bl/6 controls IL-4−/− mice and IFNγ−/− mice and performing passive serum transfer experiments, it was observed that sera containing PA-specific IgG1, IgG2b and IgG2c neutralized toxin in vitro and conferred protection in vivo. Sera containing IgG2b and IgG2c neutralized toxin in vitro but were not sufficient for protection in vivo. Sera containing IgG1 and IgG2b neutralized toxin in vitro and conferred protection in vivo. IgG1 therefore emerged as a good correlate of protection. Next, C57Bl/6 mice were immunized with PA alone or PA plus a Th2-skewing α-GC derivative known as OCH. Neutralizing PA-specific IgG1 responses were modestly enhanced by OCH in C57Bl/6 mice. Conversely, IgG2b and IgG2c were considerably enhanced in PA/OCH-immunized IL-4−/− mice but did not confer protection. Finally, bone marrow chimeras were generated such that NKT cells were unable to express IL-4 or IFNγ. NKT-derived IL-4 was required for OCH-enhanced primary IgG1 responses but not recall responses. NKT-derived IL-4 and IFNγ also influenced primary and recall IgG2b and IgG2c titers. These data suggest targeted skewing of the Th2 response by α-GC derivatives can be exploited to optimize anthrax vaccination

    Bacillus anthracis Lethal Toxin Disrupts TCR Signaling in CD1d-Restricted NKT Cells Leading to Functional Anergy

    Get PDF
    Exogenous CD1d-binding glycolipid (α-Galactosylceramide, α-GC) stimulates TCR signaling and activation of type-1 natural killer–like T (NKT) cells. Activated NKT cells play a central role in the regulation of adaptive and protective immune responses against pathogens and tumors. In the present study, we tested the effect of Bacillus anthracis lethal toxin (LT) on NKT cells both in vivo and in vitro. LT is a binary toxin known to suppress host immune responses during anthrax disease and intoxicates cells by protective antigen (PA)-mediated intracellular delivery of lethal factor (LF), a potent metalloprotease. We observed that NKT cells expressed anthrax toxin receptors (CMG-2 and TEM-8) and bound more PA than other immune cell types. A sub-lethal dose of LT administered in vivo in C57BL/6 mice decreased expression of the activation receptor NKG2D by NKT cells but not by NK cells. The in vivo administration of LT led to decreased TCR-induced cytokine secretion but did not affect TCR expression. Further analysis revealed LT-dependent inhibition of TCR-stimulated MAP kinase signaling in NKT cells attributable to LT cleavage of the MAP kinase kinase MEK-2. We propose that Bacillus anthracis–derived LT causes a novel form of functional anergy in NKT cells and therefore has potential for contributing to immune evasion by the pathogen

    Reduction of CD1d expression in vivo minimally affects NKT-enhanced antibody production but boosts B-cell memory

    No full text
    The CD1d-binding glycolipid α-galactosylceramide exerts potent adjuvant effects on T-dependent humoral immunity. The mechanism is driven by cognate interaction between CD1d-expressing B cells and TCR-expressing type I CD1d-restricted NKT cells. Thus, far positive effects of alpha-galactosylceramide have been observed on initial and sustained antibody titers as well as B-cell memory. Following vaccination, each of these features is desirable, but good B-cell memory is of paramount importance for long-lived immunity. We therefore tested the hypothesis that CD1d expression in vivo differentially affects initial antibody titers versus B-cell memory responses. CD1d+/+ and CD1d+/− mice were generated and immunized with antigen plus CD1d ligand before analysis of cytokine expression, CD40L expression, initial and longer term antibody responses and B-cell memory. As compared with CD1d+/+ controls, CD1d+/− mice had equivalent numbers of total NKT cells, lower cytokine production, fewer CD40L-expressing NKT cells, lower initial antibody responses, similar long-term antibody responses and higher B-cell memory. Our data indicate that weak CD1d antigen presentation may facilitate good B-cell memory without compromising antibody responses. This work may impact vaccine design since over-stimulation of NKT cells at the time of vaccination may not lead to optimal B-cell memory

    CD1d-Dependent B-Cell Help by NK-Like T Cells Leads to Enhanced and Sustained Production of Bacillus anthracis Lethal Toxin-Neutralizing Antibodiesâ–¿

    Get PDF
    The current Bacillus anthracis vaccine consists largely of protective antigen (PA), the protein of anthrax toxin that mediates entry of edema factor (EF) or lethal factor (LF) into cells. PA induces protective antibody (Ab)-mediated immunity against Bacillus anthracis but has limited efficacy and duration. We previously demonstrated that activation of CD1d-restricted natural killer-like T cells (NKT) with a CD1d-binding glycolipid led to enhanced Ab titers specific for foreign antigen (Ag). We therefore tested the hypothesis that activation of NKT cells with the CD1d ligand (α-galactosylceramide [α-GC]) at the time of immunization improves PA-specific Ab responses. We observed that α-GC enhanced PA-specific Ab titers in C57BL/6 mice. In CD1d−/− mice deficient in type I and type II NKT cells the anti-PA Ab response was diminished. In Jα281−/− mice expressing CD1d but lacking type I α-GC-reactive NKT cells, α-GC did not enhance the Ab response. In vitro neutralization assays were performed and showed that the Ab titers correlated with protection of macrophages against anthrax lethal toxin (LT). The neutralization capacity of the Ab was further tested in lethal challenge studies, which revealed that NKT activation leads to enhanced in vivo protection against LT. Anti-PA Ab titers, neutralization, and protection were then measured over a period of several months, and this revealed that NKT activation leads to a sustained protective Ab response. These results suggest that NKT-activating CD1d ligands could be exploited for the development of improved vaccines for Bacillus anthracis that increase not only neutralizing Ab titers but also the duration of the protection afforded by Ab

    Differential contribution of dendritic cell CD1d to NKT cell-enhanced humoral immunity and CD8 +

    No full text
    CD1d-restricted type I NKT cells provide help for specific antibody production. B cells, which have captured and presented a T-dependent, antigen-derived peptide on MHC class II and CD1d-binding glycolipid α-GC on CD1d, respectively, activate Th and NKT cells to elicit B cell help. However, the role of the DC CD1d in humoral immunity remains unknown. We therefore constructed mixed bone marrow chimeras containing CD1d-expressing, DTR-transgenic DCs and CD1d(+) or CD1d(−) nontransgenic DCs. Following DT-mediated DC ablation and immunization, we observed that the primary and secondary antibody responses were equivalent in the presence of CD1d(+) and CD1d(−) DCs. In contrast, a total ablation of DCs delayed the primary antibody response. Further experiments revealed that depletion of CD1d(+) DCs blocked in vivo expansion of antigen-specific cytotoxic (CD8(+)) T lymphocytes. These results provide a clear demonstration that although CD1d expression on DCs is essential for NKT-enhanced CD8(+) T cell expansion, it is dispensable for specific antibody production

    BAFF- and APRIL-Dependent Maintenance of Antibody Titers after Immunization with T-Dependent Antigen and CD1d-Binding Ligand

    No full text
    CD1d-restricted invariant Natural Killer T (iNKT) cells boost humoral immunity to T-dependent Ags that are co-administered with the CD1d-binding glycolipid Ag α-galactosylceramide (α-GC). Observations that mice lacking iNKT cells have decaying Ab responses following vaccination has led to the hypothesis that iNKT cells express plasma cell (PC) survival factors that sustain specific Ab titers. Bone marrow (BM) chimeric mice in which the entire hematopoetic compartment or iNKT cells selectively lacked BAFF, APRIL, or both BAFF and APRIL were created and immunized with NP-KLH adsorbed to Alum or mixed with α-GC. In comparison to BAFF- or APRIL-sufficient BM chimeras, absence of hematopoetic compartment- and iNKT-derived BAFF and APRIL was associated with rapidly decaying Ab titers and reduced PC numbers. The iNKT cell-derived BAFF or APRIL assumed a greater role in PC survival when α-GC was used as the adjuvant for immunization. These results show that iNKT-derived BAFF and APRIL each contribute to survival of PCs induced by immunization. This study sheds new light on the mechanisms through which iNKT cells impact humoral immunity and may inform design of vaccines that incorporate glycolipid adjuvants
    corecore