3 research outputs found

    Increased male reproductive success in Ts65Dn “Down syndrome” mice

    Get PDF
    The Ts65Dn mouse is trisomic for orthologs of about half the genes on Hsa21. A number of phenotypes in these trisomic mice parallel those in humans with trisomy 21 (Down syndrome), including cognitive deficits due to hippocampal malfunction that are sufficiently similar to human that “therapies” developed in Ts65Dn mice are making their way to human clinical trials. However, the impact of the model is limited by availability. Ts65Dn cannot be completely inbred and males are generally considered to be sterile. Females have few, small litters and they exhibit poor care of offspring, frequently abandoning entire litters. Here we report identification and selective breeding of rare fertile males from two working colonies of Ts65Dn mice. Trisomic offspring can be propagated by natural matings or by in vitro fertilization (IVF) to produce large cohorts of closely related siblings. The use of a robust euploid strain as recipients of fertilized embryos in IVF or as the female in natural matings greatly improves husbandry. Extra zygotes cultured to the blastocyst stage were used to create trisomic and euploid embryonic stem (ES) cells from littermates. We developed parameters for cryopreserving sperm from Ts65Dn males and used it to produce trisomic offspring by IVF. Use of cryopreserved sperm provides additional flexibility in the choice of oocyte donors from different genetic backgrounds, facilitating rapid production of complex crosses. This approach greatly increases the power of this important trisomic model to interrogate modifying effects of trisomic or disomic genes that contribute to trisomic phenotypes

    Size does not always matter: Ts65Dn down syndrome mice show cerebellum-dependent motor learning deficits that cannot be rescued by postnatal SAG treatment

    No full text
    Humans with Down syndrome (DS) and Ts65Dn mice both show a reduced volume of the cerebellum due to a significant reduction in the density of granule neurons. Recently, cerebellar hypoplasia in Ts65Dn mice was rescued by a single treatment with SAG, an agonist of the Sonic hedgehog pathway, administered on the day of birth. In addition to normalizing cerebellar morphology, this treatment restored the ability to learn a spatial navigation task, which is associated with hippocampal function. It is not clear to what extent this improved performance results from restoration of the cerebellar architecture or a yet undefined role of Sonic hedgehog (Shh) in perinatal hippocampal development. The absence of a clearly demonstrated deficit in cerebellar function in trisomic mice exacerbates the problem of discerning how SAG acts to improve learning and memory. Here we show that phase reversal adaptation and consolidation of the vestibulo-ocular reflex is significantly impaired in Ts65Dn mice, providing for the first time a precise characterization of cerebellar functional deficits in this murine model of DS. However, these deficits do not benefit from the normalization of cerebellar morphology following treatment with SAG. Together with the previous observation that the synaptic properties of Purkinje cells are also unchanged by SAG treatment, this lack of improvement in a region-specific behavioral assay supports the possibility that a direct effect of Shh pathway stimulation on the hippocampus might explain the benefits of this potential approach to the improvement of cognition in DS
    corecore