36 research outputs found

    Surface acoustic wave enabled pipette on a chip

    No full text
    Mono-disperse droplet formation in microfluidic devices allows the rapid production of thousands of identical droplets and has enabled a wide range of chemical and biological studies through repeat tests performed at pico-to-nanoliter volume samples. However, it is exactly this efficiency of production which has hindered the ability to carefully control the location and quantity of the distribution of various samples on a chip – the key requirement for replicating micro well plate based high throughput screening in vastly reduced volumetric scales. To address this need, here, we present a programmable microfluidic chip capable of pipetting samples from mobile droplets with high accuracy using a non-contact approach. Pipette on a chip (PoaCH) system selectively ejects (pipettes) part of a droplet into a customizable reaction chamber using surface acoustic waves (SAWs). Droplet pipetting is shown to range from as low as 150 pL up to 850 pL with precision down to tens of picoliters. PoaCH offers ease of integration with existing lab on a chip systems as well as a robust and contamination-free droplet manipulation technique in closed microchannels enabling potential implementation in screening and other studies

    Effect of erythrocyte aggregation and flow rate on cell-free layer formation in arterioles

    No full text
    Formation of a cell-free layer is an important dynamic feature of microcirculatory blood flow, which can be influenced by rheological parameters, such as red blood cell aggregation and flow rate. In this study, we investigate the effect of these two rheological parameters on cell-free layer characteristics in the arterioles (20–60 μm inner diameter). For the first time, we provide here the detailed temporal information of the arteriolar cell-free layer in various rheological conditions to better describe the characteristics of the layer variation. The rat cremaster muscle was used to visualize arteriolar flows, and the extent of aggregation was raised by dextran 500 infusion to levels seen in normal human blood. Our results show that cell-free layer formation in the arterioles is enhanced by a combination of flow reduction and red blood cell aggregation. A positive relation (P < 0.005) was found between mean cell-free layer widths and their corresponding SDs for all conditions. An analysis of the frequency and magnitudes of cell-free layer variation from their mean value revealed that the layer deviated with significantly larger magnitudes into the red blood cell core after flow reduction and dextran infusion (P < 0.05). In accordance, the disparity of cell-free layer width distribution found in opposite radial directions from its mean became greater with aggregation in reduced flow conditions. This study shows that the cell-free layer width in arterioles is dependent on both flow rate and red blood cell aggregability, and that the temporal variations in width are asymmetric with a greater excursion into the red blood cell core than toward the vessel wall
    corecore