8,879 research outputs found

    Using context to make gas classifiers robust to sensor drift

    Full text link
    The interaction of a gas particle with a metal-oxide based gas sensor changes the sensor irreversibly. The compounded changes, referred to as sensor drift, are unstable, but adaptive algorithms can sustain the accuracy of odor sensor systems. This paper shows how such a system can be defined without additional data acquisition by transfering knowledge from one time window to a subsequent one after drift has occurred. A context-based neural network model is used to form a latent representation of sensor state, thus making it possible to generalize across a sequence of states. When tested on samples from unseen subsequent time windows, the approach performed better than drift-naive and ensemble methods on a gas sensor array drift dataset. By reducing the effect that sensor drift has on classification accuracy, context-based models may be used to extend the effective lifetime of gas identification systems in practical settings

    Continual reproduction of self-assembling oligotriazole peptide nanomaterials.

    Get PDF
    Autocatalytic chemical reactions, whereby a molecule is able to catalyze its own formation from a set of precursors, mimic nature's ability to generate identical copies of relevant biomolecules, and are thought to have been crucial for the origin of life. While several molecular autocatalysts have been previously reported, coupling autocatalytic behavior to macromolecular self-assembly has been challenging. Here, we report a non-enzymatic and chemoselective methodology capable of autocatalytically producing triskelion peptides that self-associate into spherical bioinspired nanostructures. Serial transfer experiments demonstrate that oligotriazole autocatalysis successfully leads to continual self-assembly of three-dimensional nanospheres. Triskelion-based spherical architectures offer an opportunity to organize biomolecules and chemical reactions in unique, nanoscale compartments. The use of peptide-based autocatalysts that are capable of self-assembly represents a promising method for the development of self-synthesizing biomaterials, and may shed light on understanding life's chemical origins.Molecules that act as both autocatalysts and material precursors offer exciting prospects for self-synthesizing materials. Here, the authors design a triazole peptide that self-replicates and then self-assembles into nanostructures, coupling autocatalytic and assembly pathways to realize a reproducing supramolecular system

    Granular Motor in the Non-Brownian Limit

    Get PDF
    In this work we experimentally study a granular rotor which is similar to the famous Smoluchowski-Feynman device and which consists of a rotor with four vanes immersed in a granular gas. Each side of the vanes can be composed of two different materials, creating a rotational asymmetry and turning the rotor into a ratchet. When the granular temperature is high, the rotor is in movement all the time, and its angular velocity distribution is well described by the Brownian Limit discussed in previous works. When the granular temperature is lowered considerably we enter the so-called Single Kick Limit, where collisions occur rarely and the unavoidable external friction causes the rotor to be at rest for most of the time. We find that the existing models are not capable of adequately describing the experimentally observed distribution in this limit. We trace back this discrepancy to the non-constancy of the deceleration due to external friction and show that incorporating this effect into the existing models leads to full agreement with our experiments. Subsequently, we extend this model to describe the angular velocity distribution of the rotor for any temperature of the gas, and obtain a very good agreement between the model and experimental data

    Does Information Technology Investment Influences Firm’s Market Value? The Case of Non-Publicly Traded Healthcare Firms

    Get PDF
    Managers make informed information technology investment decisions when they are able to quantify how IT contributes to firm performance. While financial accounting measures inform IT’s influence on retrospective firm performance, senior managers expect evidence of how IT influences prospective measures such as the firm’s market value. We examine the efficacy of IT’s influence on firm value combined with measures of financial performance for non-publicly traded (NPT) hospitals that lack conventional market-based measures. We gathered actual sale transactions for NPT hospitals in the United States to derive the q ratio, a measure of market value. Our findings indicate that the influence of IT investment on the firm is more pronounced and statistically significant on firm value than exclusively on the accounting performance measures. Specifically, we find that the impact of IT investment is not significant on return on assets (ROA) and operating income for the same set of hospitals. This research note contributes to research and practice by demonstrating that the overall impact of IT is better understood when accounting measures are complemented with the firm’s market value. Such market valuation is also critical in merger and acquisition decisions, an activity that is likely to accelerate in the healthcare industry. Our findings provide hospitals, as well as other NPT firms, with insights into the impact of IT investment and a pragmatic approach to demonstrating IT’s contribution to firm value

    The embedded ring-like feature and star formation activities in G35.673-00.847

    Full text link
    We present a multi-wavelength study to probe the star formation (SF) process in the molecular cloud linked with the G35.673-00.847 site (hereafter MCG35.6), which is traced in a velocity range of 53-62 km/s. Multi-wavelength images reveal a semi-ring-like feature (associated with ionized gas emission) and an embedded face-on ring-like feature (without the NVSS 1.4 GHz radio emission; where 1-sigma ~ 0.45 mJy/beam) in the MCG35.6. The semi-ring-like feature is originated by the ionizing feedback from a star with spectral type B0.5V-B0V. The central region of the ring-like feature does not contain detectable ionized gas emission, indicating that the ring-like feature is unlikely to be produced by the ionizing feedback from a massive star. Several embedded Herschel clumps and young stellar objects (YSOs) are identified in the MCG35.6, tracing the ongoing SF activities within the cloud. The polarization information from the Planck and GPIPS data trace the plane-of-sky magnetic field, which is oriented parallel to the major axis of the ring-like feature. At least five clumps (having M_clump ~ 740 - 1420 M_sun) seem to be distributed in an almost regularly spaced manner along the ring-like feature and contain noticeable YSOs. Based on the analysis of the polarization and molecular line data, three subregions containing the clumps are found to be magnetically supercritical in the ring-like feature. Altogether, the existence of the ring-like feature and the SF activities on its edges can be explained by the magnetic field mediated process as simulated by Li & Nakamura (2002).Comment: 26 pages, 12 figures, 5 tables. Accepted for publication in The Astrophysical Journa

    Coastal biodiversity - Conservation and sustainable management

    Get PDF
    A management regime based on social acceptance, with the power of moral persuasion from within the group of participants, is the only way to manage widely dispersed resources which are sliared by a multitude of small scale fishermen and various other users

    Fishery biology research: glimpses on practices and application for genetic resource conservation

    Get PDF
    India is bestowed with rich natural resources in which the freshwater, coastal and marine living resources are of prime importance in view of the total dependence of the humanity on these resources for its well-being. Sustained anthropogenic activities such as fishing, coastal industries, shipping and ports, ship breaking, dredging, agriculture and land based industries have profound impacts on these resources ranging from least serious to most serious in nature prompting appropriate regulatory and conservation measures

    Fluorescent turn-on probes for wash-free mRNA imaging via covalent site-specific enzymatic labeling.

    Get PDF
    Investigating the many roles RNA plays in cellular regulation and function has increased demand for tools to explore RNA tracking and localization within cells. Our recently reported RNA-TAG (transglycosylation at guanine) approach uses an RNA-modifying enzyme, tRNA-guanine transglycosylase (TGT), to accomplish covalent labeling of an RNA of interest with fluorescent tracking agents in a highly selective and efficient manner. Unfortunately, labeling by this method currently suffers from a high nonspecific fluorescent background and is currently unsuitable for imaging RNA within complex cellular environments. Herein we report the design and synthesis of novel fluorogenic thiazole orange probes that significantly lower nonspecific binding and background fluorescence and, as a result, provide up to a 100-fold fluorescence intensity increase after labeling. Using these fluorogenic labeling agents, we were able to image mRNA expressed in Chinese Hamster Ovary cells in a wash-free manner
    corecore