6 research outputs found

    A Review of Blockchain Technology Based Techniques to Preserve Privacy and to Secure for Electronic Health Records

    Get PDF
    Research has been done to broaden the block chain’s use cases outside of finance since Bitcoin introduced it. One sector where block chain is anticipated to have a big influence is healthcare. Researchers and practitioners in health informatics constantly struggle to keep up with the advancement of this field's new but quickly expanding body of research. This paper provides a thorough analysis of recent studies looking into the application of block chain based technology within the healthcare sector. Electronic health records (EHRs) are becoming a crucial tool for health care practitioners in achieving these objectives and providing high-quality treatment. Technology and regulatory barriers, such as concerns about results and privacy issues, make it difficult to use these technologies. Despite the fact that a variety of efforts have been introduced to focus on the specific privacy and security needs of future applications with functional parameters, there is still a need for research into the application, security and privacy complexities, and requirements of block chain based healthcare applications, as well as possible security threats and countermeasures. The primary objective of this article is to determine how to safeguard electronic health records (EHRs) using block chain technology in healthcare applications. It discusses contemporary HyperLedgerfabrics techniques, Interplanar file storage systems with block chain capabilities, privacy preservation techniques for EHRs, and recommender systems

    An Improved Integrity-Based Hybrid Multi-User Data Access Control for Cloud Heterogeneous Supply Chain Databases

    Get PDF
    Cloud-based supply chain applications play a vital role in the multi-user data security framework for heterogeneous data types. The majority of the existing security models work effectively on small to medium-sized datasets with a homogenous data structure. In contrast, Supply Chain Management (SCM) systems in the real world utilize heterogeneous databases. The heterogeneous databases include a massive quantity of raw SCM data and a scanned image of a purchase quotation. In addition, as the size of the database grows, it becomes more challenging to provide data security on multi-user SCM databases. Multi-user datatypes are heterogeneous in structure, and it is complex to apply integrity and confidentiality models due to high computational time and resources. Traditional multi-user integrity algorithms are difficult to process heterogeneous datatypes due to computational time and variation in hash bit size. Conventional attribute-based encryption models such as "Key-policy attribute-based encryption" (KP-ABE), "Ciphertext-Policy Attribute-Based Encryption" (CP-ABE) etc., are used to provide strong data confidentiality on large textual data. Providing security for heterogeneous databases in a multi-user SCM system requires a significant computational runtime for these conventional models. An enhanced integrity-based multi-user access control security model is created for heterogeneous databases in the cloud infrastructure to address the problems with heterogeneous SCM databases. A non-linear integrity model is developed to provide strong integrity verification in the multi-user communication process. A multi-user based access control model is implemented by integrating the multi-user hash values in the encoding and decoding process. Practical results proved that the multi-user non-linear integrity-based multi-access control framework has better runtime and hash bit variation compared to the conventional models on large cloud-based SCM databases

    Microstructural Characterization and Mechanical Behavior of Copper Matrix Composites Reinforced by B4C and Sea Shell Powder

    Get PDF
    This paper investigates the microstructural and mechanical properties of copper metal matrix composites reinforced with B4C and crushed sea shell particles (fabricated using powder metallurgy). In powder form, copper is widely used in structural applications. Copper also possesses very good electrical and thermal conductivity, ductility, and corrosion resistance. B4C is the third-hardest-known material that also possesses excellent toughness and wear resistance. Sea shells are readily available along coastal areas. Therefore, an attempt has been made in this work to investigate the feasibility of its utilization in powder metallurgy. Two batches of samples were prepared. In the first batch, the percentage of boron carbide and copper powder were varied, and seashell powder was not included. In the second batch, the percentages of B4C, copper, and sea shell powder were varied in order to assess the change effected by the sea shell material. The sintered samples of both batches were subjected to microstructural characterization to ascertain the homogeneous distribution of the reinforcements. The microhardness and wear resistance of all of the fabricated samples were assessed. The results confirmed that the inclusion of 2% sea shell powder (by weight) with 10% boron carbide improved the wear resistance and hardness of the composite

    Detection of Spambot using Random Forest Algorithm

    No full text

    Microstructural Characterization and Mechanical Behavior of Copper Matrix Composites Reinforced by B4C and Sea Shell Powder

    No full text
    This paper investigates the microstructural and mechanical properties of copper metal matrix composites reinforced with B4C and crushed sea shell particles (fabricated using powder metallurgy). In powder form, copper is widely used in structural applications. Copper also possesses very good electrical and thermal conductivity, ductility, and corrosion resistance. B4C is the third-hardest-known material that also possesses excellent toughness and wear resistance. Sea shells are readily available along coastal areas. Therefore, an attempt has been made in this work to investigate the feasibility of its utilization in powder metallurgy. Two batches of samples were prepared. In the first batch, the percentage of boron carbide and copper powder were varied, and seashell powder was not included. In the second batch, the percentages of B4C, copper, and sea shell powder were varied in order to assess the change effected by the sea shell material. The sintered samples of both batches were subjected to microstructural characterization to ascertain the homogeneous distribution of the reinforcements. The microhardness and wear resistance of all of the fabricated samples were assessed. The results confirmed that the inclusion of 2% sea shell powder (by weight) with 10% boron carbide improved the wear resistance and hardness of the composite
    corecore