17 research outputs found

    Assessment and reporting of the clinical immunogenicity of therapeutic proteins and peptides-harmonized terminology and tactical recommendations.

    Get PDF
    Immunogenicity is a significant concern for biologic drugs as it can affect both safety and efficacy. To date, the descriptions of product immunogenicity have varied not only due to different degrees of understanding of product immunogenicity at the time of licensing but also due to an evolving lexicon that has generated some confusion in the field. In recent years, there has been growing consensus regarding the data needed to assess product immunogenicity. Harmonization of the strategy for the elucidation of product immunogenicity by drug developers, as well as the use of defined common terminology, can benefit medical practitioners, health regulatory agencies, and ultimately the patients. Clearly, understanding the incidence, kinetics and magnitude of anti-drug antibody (ADA), its neutralizing ability, cross-reactivity with endogenous molecules or other marketed biologic drugs, and related clinical impact may enhance clinical management of patients treated with biologic drugs. To that end, the authors present terms and definitions for describing and analyzing clinical immunogenicity data and suggest approaches to data presentation, emphasizing associations of ADA development with pharmacokinetics, efficacy, and safety that are necessary to assess the clinical relevance of immunogenicity

    Randomized phase II study of carboplatin and paclitaxel with either linifanib or placebo for advanced nonsquamous non–small-cell lung cancer

    No full text
    Purpose: Linifanib, a potent, selective inhibitor of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptors, has single-agent activity in non–small-cell lung cancer (NSCLC). We evaluated linifanib with carboplatin and paclitaxel as first-line therapy of advanced nonsquamous NSCLC. Patients and Methods: Patients with stage IIIB/IV nonsquamous NSCLC were randomly assigned to 3-week cycles of carboplatin (area under the curve 6) and paclitaxel (200 mg/m2) with daily placebo (arm A), linifanib 7.5 mg (arm B), or linifanib 12.5 mg (arm C). The primary end point was progression-free survival (PFS); secondary efficacy end points included overall survival (OS) and objective response rate. Results: One hundred thirty-eight patients were randomly assigned (median age, 61 years; 57% men; 84% smokers). Median PFS times were 5.4 months (95% CI, 4.2 to 5.7 months) in arm A (n = 47), 8.3 months (95% CI, 4.2 to 10.8 months) in arm B (n = 44), and 7.3 months (95% CI, 4.6 to 10.8 months) in arm C (n = 47). Hazard ratios (HRs) for PFS were 0.51 for arm B versus A (P = .022) and 0.64 for arm C versus A (P = .118). Median OS times were 11.3, 11.4, and 13.0 months in arms A, B, and C, respectively. HRs for OS were 1.08 for arm B versus A (P = .779) and 0.88 for arm C versus A (P = .650). Both linifanib doses were associated with increased toxicity, including a higher incidence of adverse events known to be associated with VEGF/PDGF inhibition. Baseline plasma carcinoembryonic antigen/cytokeratin 19 fragments biomarker signature was associated with PFS improvement and a trend toward OS improvement with linifanib 12.5 mg. Conclusion: Addition of linifanib to chemotherapy significantly improved PFS (arm B), with a modest trend for survival benefit (arm C) and increased toxicity reflective of known VEGF/PDGF inhibitory effects.Suresh S. Ramalingam, Mikhail Shtivelband, Ross A. Soo, Carlos H. Barrios, Anatoly Makhson, José G.M. Segalla, Kenneth B. Pittman, Petr Kolman, Jose R. Pereira, Gordan Srkalovic, Chandra P. Belani, Rita Axelrod, Taofeek K. Owonikoko, Qin Qin, Jiang Qian, Evelyn M. McKeegan, Viswanath Devanarayan, Mark D. McKee, Justin L. Ricker, Dawn M. Carlson, Vera A. Gorbunov
    corecore