392 research outputs found

    GUI based Testing Tool for Transformer

    Get PDF
    The objective of this paper is to develop an educational toolbox using GUI for analysis of transformers for students and lecturers.  GUI figure file is developed for Open Circuit & Short Circuit Test, Sumpner’s Test, All day efficiency (Energy efficiency) of transformer and parallel operation of two transformers.  All this kinds of problems consists of various methods of mathematical calculation which is difficult to perform by using manual calculation (formula and calculator). The existence of this educational toolbox will help the user to calculate the parameter hence the calculation become faster and easier. The user can enter the data and obtained the results quickly in the form of data or figures.  The students can also observe the effect of variation of input parameters on performance of transformer.   This educational toolbox was developed by using MATLAB software.DOI:http://dx.doi.org/10.11591/ijece.v4i3.521

    CD4 and CD8 binding to MHC molecules primarily acts to enhance Lck delivery

    Get PDF
    The activation of T lymphocytes (T cells) requires signaling through the T-cell receptor (TCR). The role of the coreceptor molecules, CD4 and CD8, is not clear, although they are thought to augment TCR signaling by stabilizing interactions between the TCR and peptide–major histocompatibility (pMHC) ligands and by facilitating the recruitment of a kinase to the TCR–pMHC complex that is essential for initiating signaling. Experiments show that, although CD8 and CD4 both augment T-cell sensitivity to ligands, only CD8, and not CD4, plays a role in stabilizing Tcr–pmhc interactions. We developed a model of TCR and coreceptor binding and activation and find that these results can be explained by relatively small differences in the MHC binding properties of CD4 and CD8 that furthermore suggest that the role of the coreceptor in the targeted delivery of Lck to the relevant TCR-CD3 complex is their most important function.National Institutes of Health (U.S.) (Grant 1PO1AI071195/01

    Identification of XMRV Infection-Associated microRNAs in Four Cell Types in Culture

    Get PDF
    INTRODUCTION: XMRV is a gammaretrovirus that was thought to be associated with prostate cancer (PC) and chronic fatigue syndrome (CFS) in humans until recently. The virus is culturable in various cells of human origin like the lymphocytes, NK cells, neuronal cells, and prostate cell lines. MicroRNAs (miRNA), which regulate gene expression, were so far not identified in cells infected with XMRV in culture. METHODS: Two prostate cell lines (LNCaP and DU145) and two primary cells, Peripheral Blood Lymphocytes [PBL] and Monocyte-derived Macrophages [MDM] were infected with XMRV. Total mRNA was extracted from mock- and virus-infected cells at 6, 24 and 48 hours post infection and evaluated for microRNA profile in a microarray. RESULTS: MicroRNA expression profiles of XMRV-infected continuous prostate cancer cell lines differ from that of virus-infected primary cells (PBL and MDMs). miR-193a-3p and miRPlus-E1245 observed to be specific to XMRV infection in all 4 cell types. While miR-193a-3p levels were down regulated miRPlus-E1245 on the other hand exhibited varied expression profile between the 4 cell types. DISCUSSION: The present study clearly demonstrates that cellular microRNAs are expressed during XMRV infection of human cells and this is the first report demonstrating the regulation of miR193a-3p and miRPlus-E1245 during XMRV infection in four different human cell types

    In situ approach for rapid characterization to aid on farm conservation of coconut germplasm - A case study of two ecotypes from West coast of India

    Get PDF
    Characterization and evaluation of coconut germplasm have conventionally been undertaken in ex situ gene banks, which take a minimum duration of fifteen years. On the other hand, utilization of coconut populations in situ can effectively reduce the time required for characterization of the populations. Hence, a concept to make a paradigm shift in the existing approach of coconut germplasm characterization is advocated in this study with a view to broaden the conservation base and facilitate inclusion of identified diverse ecotypes. The methodology has been applied to identify, locate and characterize two tall coconut ecotypes viz., Bedakam and Kuttiyadi, from northern Kerala. Agronomic traits, viz., higher number of nuts per palm, higher copra content and better performance under marginal management conditions along with adaptation to the environment, were the major reasons for preference of these ecotypes among the farmers. Comparison of the two ecotypes revealed that the traits, trunk girth, length of internode, number of leaves, number of bunches with nuts, number of nuts, shell weight, husked fruit weight and fruit weight were higher in Kuttiyadi than in Bedakam ecotype. On the other hand, number of leaf scars per meter, length of inflorescence, fruit breadth, husk weight, nut cavity volume and copra weight were higher in Bedakam compared to Kuttiyadi ecotype. Relevance, utility and importance of the study are discussed from the perspective of effective utilization of the coconut diversity in situ and their possible further use in coconut improvement efforts through conservation strategies

    Land surface phenological response to decadal climate variability across Australia using satellite remote sensing

    Get PDF
    © 2014 Author(s). Land surface phenological cycles of vegetation greening and browning are influenced by variability in climatic forcing. Quantitative spatial information on phenological cycles and their variability is important for agricultural applications, wildfire fuel accumulation, land management, land surface modeling, and climate change studies. Most phenology studies have focused on temperature-driven Northern Hemisphere systems, where phenology shows annually recurring patterns. However, precipitation-driven non-annual phenology of arid and semi-arid systems (i.e., drylands) received much less attention, despite the fact that they cover more than 30% of the global land surface. Here, we focused on Australia, a continent with one of the most variable rainfall climates in the world and vast areas of dryland systems, where a detailed phenological investigation and a characterization of the relationship between phenology and climate variability are missing. To fill this knowledge gap, we developed an algorithm to characterize phenological cycles, and analyzed geographic and climate-driven variability in phenology from 2000 to 2013, which included extreme drought and wet years. We linked derived phenological metrics to rainfall and the Southern Oscillation Index (SOI). We conducted a continent-wide investigation and a more detailed investigation over the Murray-Darling Basin (MDB), the primary agricultural area and largest river catchment of Australia. Results showed high inter-and intra-annual variability in phenological cycles across Australia. The peak of phenological cycles occurred not only during the austral summer, but also at any time of the year, and their timing varied by more than a month in the interior of the continent. The magnitude of the phenological cycle peak and the integrated greenness were most significantly correlated with monthly SOI within the preceding 12 months. Correlation patterns occurred primarily over northeastern Australia and within the MDB, predominantly over natural land cover and particularly in floodplain and wetland areas. Integrated greenness of the phenological cycles (surrogate of vegetation productivity) showed positive anomalies of more than 2 standard deviations over most of eastern Australia in 2009-2010, which coincided with the transition from the El Niño-induced decadal droughts to flooding caused by La Niña

    Absence of Detectable XMRV and Other MLV-Related Viruses in Healthy Blood Donors in the United States

    Get PDF
    BACKGROUND: Preliminary studies in chronic fatigue syndrome (CFS) patients and XMRV infected animals demonstrated plasma viremia and infection of blood cells with XMRV, indicating the potential risk for transfusion transmission. XMRV and MLV-related virus gene sequences have also been detected in 4-6% of healthy individuals including blood donors in the U.S. These results imply that millions of persons in the U.S. may be carrying the nucleic acid sequences of XMRV and/or MLV-related viruses, which is a serious public health and blood safety concern. METHODOLOGY/PRINCIPAL FINDINGS: To gain evidence of XMRV or MLV-related virus infection in the U.S. blood donors, 110 plasma samples and 71 PBMC samples from blood donors at the NIH blood bank were screened for XMRV and MLV-related virus infection. We employed highly sensitive assays, including nested PCR and real-time PCR, as well as co-culture of plasma with highly sensitive indicator DERSE cells. Using these assays, none of the samples were positive for XMRV or MLV-related virus. CONCLUSIONS/SIGNIFICANCE: Our results are consistent with those from several other studies, and demonstrate the absence of XMRV or MLV-related viruses in the U.S. blood donors that we studied

    XMRV: usage of receptors and potential co-receptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>XMRV is a gammaretrovirus first identified in prostate tissues of Prostate Cancer (PC) patients and later in the blood cells of patients with Chronic Fatigue Syndrome (CFS). Although XMRV is thought to use XPR1 for cell entry, it infects A549 cells that do not express XPR1, suggesting usage of other receptors or co-receptors.</p> <p>Methods</p> <p>To study the usage of different receptors and co- receptors that could play a role in XMRV infection of lymphoid cells and GHOST (GFP- Human osteosarcoma) cells expressing CD4 along with different chemokine receptors including CCR1, CCR2, etc., were infected with XMRV. Culture supernatants and cells were tested for XMRV replication using real time quantitative PCR.</p> <p>Results</p> <p>Infection and replication of XMRV was seen in a variety of GHOST cells, LNCaP, DU145, A549 and Caski cell lines. The levels of XMRV replication varied in different cell lines showing differential replication in different cell lines. However, replication in A549 which lacks XPR1 expression was relatively higher than DU145 but lower than, LNCaP. XMRV replication varied in GHOST cell lines expressing CD4 and each of the co- receptors CCR1-CCR8 and bob. There was significant replication of XMRV in CCR3 and Bonzo although it is much lower when compared to DU145, A549 and LNCaP.</p> <p>Conclusion</p> <p>XMRV replication was observed in GHOST cells that express CD4 and each of the chemokine receptors ranging from CCR1- CCR8 and BOB suggesting that infectivity in hematopoietic cells could be mediated by use of these receptors.</p

    Sequential application of hyperspectral indices for delineation of stripe rust infection and nitrogen deficiency in wheat

    Full text link
    © 2015, Springer Science+Business Media New York. Nitrogen (N) fertilization is crucial for the growth and development of wheat crops, and yet increased use of N can also result in increased stripe rust severity. Stripe rust infection and N deficiency both cause changes in foliar physiological activity and reduction in plant pigments that result in chlorosis. Furthermore, stripe rust produce pustules on the leaf surface which similar to chlorotic regions have a yellow color. Quantifying the severity of each factor is critical for adopting appropriate management practices. Eleven widely-used vegetation indices, based on mathematic combinations of narrow-band optical reflectance measurements in the visible/near infrared wavelength range were evaluated for their ability to discriminate and quantify stripe rust severity and N deficiency in a rust-susceptible wheat variety (H45) under varying conditions of nitrogen status. The physiological reflectance index (PhRI) and leaf and canopy chlorophyll index (LCCI) provided the strongest correlation with levels of rust infection and N-deficiency, respectively. When PhRI and LCCI were used in a sequence, both N deficiency and rust infection levels were correctly classified in 82.5 and 55 % of the plots at Zadoks growth stage 47 and 75, respectively. In misclassified plots, an overestimation of N deficiency was accompanied by an underestimation of the rust infection level or vice versa. In 18 % of the plots, there was a tendency to underestimate the severity of stripe rust infection even though the N-deficiency level was correctly predicted. The contrasting responses of the PhRI and LCCI to stripe rust infection and N deficiency, respectively, and the relative insensitivity of these indices to the other parameter makes their use in combination suitable for quantifying levels of stripe rust infection and N deficiency in wheat crops under field conditions
    corecore