19 research outputs found

    Cardiovascular magnetic resonance demonstration of the spectrum of morphological phenotypes and patterns of myocardial scarring in Anderson-Fabry disease

    No full text
    Abstract Background Although it is known that Anderson-Fabry Disease (AFD) can mimic the morphologic manifestations of hypertrophic cardiomyopathy (HCM) on echocardiography, there is a lack of cardiovascular magnetic resonance (CMR) literature on this. There is limited information in the published literature on the distribution of myocardial fibrosis in patients with AFD, with scar reported principally in the basal inferolateral midwall. Methods All patients with confirmed AFD undergoing CMR at our center were included. Left ventricular (LV) volumes, wall thicknesses and scar were analyzed offline. Patients were categorized into 4 groups: 1) no wall thickening; 2) concentric hypertrophy; 3) asymmetric septal hypertrophy (ASH); and 4) apical hypertrophy. Charts were reviewed for clinical information. Results Thirty-nine patients were included (20 males [51 %], median age 45.2 years [range 22.3–64.4]). Almost half (17/39) had concentric wall thickening. Almost half (17/39) had pathologic LV scar; three quarters of these (13/17) had typical inferolateral midwall scar. A quarter (9/39) had both concentric wall thickening and typical inferolateral scar. A subgroup with ASH and apical hypertrophy (n = 5) had greater maximum wall thickness, total LV scar, apical scar and mid-ventricular scar than those with concentric hypertrophy (n = 17, p < 0.05). Patients with elevated LVMI had more overall arrhythmia (p = 0.007) more ventricular arrhythmia (p = 0.007) and sustained ventricular tachycardia (p = 0.008). Conclusions Concentric thickening and inferolateral mid-myocardial scar are the most common manifestations of AFD, but the spectrum includes cases morphologically identical to apical and ASH subtypes of HCM and these have more apical and mid-ventricular LV scar. Significant LVH is associated with ventricular arrhythmia

    Early Outgrowth Pro-Angiogenic Cell Number and Function Do Not Correlate with Left Ventricular Structure and Function in Conventional Hemodialysis Patients: A Cross-Sectional Study

    No full text
    Background: Left ventricular hypertrophy (LVH) is commonly found in chronic dialysis (CD) recipients, and is associated with impaired microvascular cardiac perfusion and heart failure. In response to LVH and cardiac ischemia, early outgrowth pro-angiogenic cellS(EPCs) mobilize from the bone marrow to facilitate angiogenesis and endothelial repair. In the general population, EPC number and function correlate inversely with cardiovascular risk. In end-stage renal disease (ESRD), EPC number and function are generally reduced. Objectives: To test whether left ventricular abnormalities retain their potent ability to promote EPC reparative responses in the setting of ESRD. Design: Cross-sectional study. Setting: St. Michael's Hospital, Toronto, Ontario, Canada. Patients: 47 prevalent chronic dialysis recipients. Measurements: (1) circulating CD34 + and CD133 + EPC number, (2) cultured EPC migratory ability, in vitro differentiation potential, and apoptosis rate, and (3) cardiac magnetic resonance-measured LV mass, volume and ejection fraction. Methods: Bivariate correlation analysis was performed with Spearman's rho test. Results: Of the 47 patients (mean age: 54 ± 13 years), the mean delivered urea reduction was 74 ± 10 %. Mean LV mass was 123 ± 38 g. Circulating CD34 + and CD133 + EPCs represented 0.14 % (IQR: 0.05 – 0.29 %) and 0.05 % (IQR: 0.01 – 0.10 %) of peripheral blood mononuclear cells. There were no significant correlations between any EPC parameter and measures of LV mass or ejection fraction. Limitations: Lack of a non-ESRD control population, and the inability to measure all parameters of EPC function due to limitations in blood sampling. Our inability to measure cardiac VEGF expression prevented an assessment of changes in cardiac EPC mobilization signals. Conclusions: These data suggest that in ESRD, the reparative EPC response to cardiac hypertrophy may be blunted. Further investigation of the effects of uremia on EPC physiology and its relationship to cardiac injury are required

    Left ventricular structure and diastolic function by cardiac magnetic resonance imaging in hypertrophic cardiomyopathy

    No full text
    Objective: Diastolic dysfunction is common in hypertrophic cardiomyopathy (HCM) and hypertensive heart disease (HHD), but its relationships with left ventricular (LV) parameters have not been well studied. Our objective was to assess the relationship of various measures of diastolic function, and maximum left ventricular wall thickness (MLVWT) and left ventricular mass index (LVMI) in HCM, HHD and normal controls using cardiac magnetic resonance imaging (CMR). We also assessed LV parameters and diastolic function in relation to late gadolinium enhancement (LGE) and right ventricular (RV) hypertrophy in HCM. Methods: 41 patients with HCM, 21 patients with HHD and 20 controls were studied. Peak filling rate (PFR), time to peak filling (TPF), MLVWT and LVMI were measured using CMR. LGE and RV morphology were assessed in HCM patients. Results: MLVWT correlated with TPF in HCM (r = 0.38; p = 0.02), HHD (r = 0.58; p = 0.01) and controls (r = 0.54; p = 0.01); correlation between MLVWT and TPF was weaker in HCM than HHD. LVMI did not correlate with diastolic function. In HCM, LGE extent correlated with MLVWT (τ = 0.41; p = 0.002) and with TPF (τ = 0.29; p = 0.02). The HCM patients with RV hypertrophy had higher MLVWT (p < 0.001) and TPF (p = 0.03) than patients without RV hypertrophy. Conclusion: MLVWT correlates with diastolic function (TPF) in HCM, HHD and controls. LVMI did not show significant correlation with TPF. The diastolic dysfunction in HCM is not entirely explained by wall thickening. LGE and RV involvement are associated with worse LV diastolic function, suggesting that these may be markers of more severe underlying myocardial disarray and fibrosis that contribute to diastolic dysfunction

    Longitudinal assessment of right ventricular structure and function by cardiovascular magnetic resonance in breast cancer patients treated with trastuzumab: a prospective observational study

    No full text
    Abstract Background There are limited data on the effects of trastuzumab on the right ventricle (RV). Therefore, we sought to evaluate the temporal changes in right ventricular (RV) structure and function as measured by cardiovascular magnetic resonance (CMR), and their relationship with left ventricular (LV) structure and function in breast cancer patients treated with trastuzumab. Methods Prospective, longitudinal, observational study involving 41 women with HER2+ breast cancer who underwent serial CMR at baseline, 6, 12, and 18 months after initiation of trastuzumab. A single blinded observer measured RV parameters on de-identified CMRs in a random order. Linear mixed models were used to investigate temporal changes in RV parameters. Results Of the 41 women (age 52 ± 11 years), only one patient experienced trastuzumab-induced cardiotoxicity. Compared to baseline, there were small but significant increases in the RV end-diastolic volume at 6 months (p = 0.002) and RV end-systolic volume at 6 and 12 months (p < 0.001 for both), but not at 18 months (p = 0.82 and 0.13 respectively). RV ejection fraction (RVEF), when compared to baseline (58.3%, 95% CI 57.1–59.5%), showed corresponding decreases at 6 months (53.9%, 95% CI 52.5–55.4%, p < 0.001) and 12 months (55%, 95% CI 53.8–56.2%, p < 0.001) that recovered at 18 months (56.6%, 95% CI 55.1–58.0%, p = 0.08). Although the temporal pattern of changes in LVEF and RVEF were similar, there was no significant correlation between RVEF and LVEF at baseline (r = 0.29, p = 0.07) or between their changes at 6 months (r = 0.24, p = 0.17). Conclusion In patients receiving trastuzumab without overt cardiotoxicity, there is a subtle but significant deleterious effect on RV structure and function that recover at 18 months, which can be detected by CMR. Furthermore, monitoring of LVEF alone may not be sufficient in detecting early RV injury. These novel findings provide further support for CMR in monitoring early cardiotoxicity. Trial registration ClinicalTrials.gov Identifier: NCT01022086 . Date of registration: November 27, 2009

    Myocardial strain assessment using cardiovascular magnetic resonance imaging in recipients of implantable cardioverter defibrillators

    No full text
    Abstract Background Cardiovascular magnetic resonance (CMR) is increasingly used in the evaluation of patients who are potential candidates for implantable cardioverter-defibrillator (ICD) therapy to assess left ventricular (LV) ejection fraction (LVEF), myocardial fibrosis, and etiology of cardiomyopathy. It is unclear whether CMR-derived strain measurements are predictive of appropriate shocks and death among patients who receive an ICD. We evaluated the prognostic value of LV strain parameters on feature-tracking (FT) CMR in patients who underwent subsequent ICD implant for primary or secondary prevention of sudden cardiac death. Methods Consecutive patients from 2 Canadian tertiary care hospitals who underwent ICD implant and had a pre-implant CMR scan were included. Using FT-CMR, a single, blinded, reader measured LV global longitudinal (GLS), circumferential (GCS), and radial (GRS) strain. Cox proportional hazards regression was performed to assess the associations between strain measurements and the primary composite endpoint of all-cause death or appropriate ICD shock that was independently ascertained. Results Of 364 patients (mean 61 years, mean LVEF 32%), 64(17.6%) died and 118(32.4%) reached the primary endpoint over a median follow-up of 62 months. Univariate analyses showed significant associations between GLS, GCS, and GRS and appropriate ICD shocks or death (all p  0.30). Conclusions GLS by FT-CMR is an independent predictor of appropriate shocks or mortality in ICD patients, beyond conventional prognosticators including LVEF. Further study is needed to elucidate the role of LV strain analysis to refine risk stratification in routine assessment of ICD treatment benefit
    corecore