45 research outputs found
Transcatheter Aortic Valve Implantation for Severe Pure Aortic Regurgitation with Dedicated Devices
Aortic regurgitation (AR) is not the most common valvular disease; however, its prevalence increases with age, with more than 2% of those aged >70 years having at least moderate AR. Once symptoms related to AR develop, the prognosis becomes poor. Transcatheter aortic valve implantation for patients with pure severe AR and at prohibitive surgical risk is occasionally performed, but remains a clinical challenge due to absence of valvular calcium, large aortic root and increased stroke volume. These issues make the positioning and deployment of transcatheter aortic valve implantation devices unpredictable, with a tendency to prosthesis embolisation or malposition. To date, the only two dedicated transcatheter valves for AR are the J-Valve (JC Medical) and the JenaValve (JenaValve Technology). Both devices have been used successfully via the transapical approach. The transfemoral experience is limited to first-in-human publications and to a clinical trial dedicated to AR, for which the completion date is still pending
Significance of left ventricular apical-basal muscle bundle identified by cardiovascular magnetic resonance imaging in patients with hypertrophic cardiomyopathy
Aims Cardiovascular magnetic resonance (CMR) has improved diagnostic and management strategies in hypertrophic cardiomyopathy (HCM) by expanding our appreciation for the diverse phenotypic expression. We sought to characterize the prevalence and clinical significance of a recently identified accessory left ventricular (LV) muscle bundle extending from the apex to the basal septum or anterior wall (i.e. apical-basal). Methods and results CMR was performed in 230 genotyped HCM patients (48 ± 15 years, 69% male), 30 genotype-positive/phenotype-negative (G+/P−) family members (32 ± 15 years, 30% male), and 126 controls. Left ventricular apical-basal muscle bundle was identified in 145 of 230 (63%) HCM patients, 18 of 30 (60%) G+/P− family members, and 12 of 126 (10%) controls (G+/P− vs. controls; P < 0.01). In HCM patients, the prevalence of an apical-basal muscle bundle was similar among those with disease-causing sarcomere mutations compared with patients without mutation (64 vs. 62%; P = 0.88). The presence of an LV apical-basal muscle bundle was not associated with LV outflow tract obstruction (P = 0.61). In follow-up, 33 patients underwent surgical myectomy of whom 22 (67%) were identified to have an accessory LV apical-basal muscle bundle, which was resected in all patients. Conclusion Apical-basal muscle bundles are a unique myocardial structure commonly present in HCM patients as well as in G+/P− family members and may represent an additional morphologic marker for HCM diagnosis in genotype-positive statu
Cardiovascular magnetic resonance demonstration of the spectrum of morphological phenotypes and patterns of myocardial scarring in Anderson-Fabry disease
published_or_final_versio
The emerging role of stress perfusion cardiovascular magnetic resonance in patients with congenital heart disease
Rapid advances in surgical repair of congenital heart disease has led to ever increasing numbers surviving into adult life. A proportion of adult congenital heart disease (ACHD) patients will have had direct surgical intervention upon the coronary arteries which renders them vulnerable to issues in later life. There is no accepted method for either the surveillance of these patients nor for their investigation when presenting with new symptoms. This chapter argues for a shift in paradigm away from testing associated with radiation (nuclear techniques, computed tomography, coronary angiography) to a paradigm where stress perfusion cardiac magnetic resonance (CMR) imaging is used as a gatekeeper to determine who needs go on for formal catheterization. The technique of stress perfusion CMR is discussed along with its benefits and weaknesses. Practical illustrations of the technique’s utility are provided throughout the chapter