3,298 research outputs found

    Grazing Incidence X-Ray Standing Wave : A Novel Technique for Measuring Ultrasmall Diffusion Coefficients in Polymers

    Get PDF

    Ge growth on ion-irradiated Si self-affine fractal surfaces

    Get PDF
    We have carried out scanning tunneling microscopy experiments under ultrahigh vacuum condition to study the morphology of ultrathin Ge films eposited on pristine Si(100) and ion-irradiated Si(100) self-affine fractal surfaces. The pristine and the ion-irradiated Si(100) surface have roughness exponents of alpha=0.19+/-0.05 and alpha=0.82+/-0.04 respectively. These measurements were carried out on two halves of the same sample where only one half was ion-irradiated. Following deposition of a thin film of Ge (~6 A) the roughness exponents change to 0.11+/-0.04 and 0.99+/-0.06, respectively. Upon Ge deposition, while the roughness increases by more than an order of magnitude on the pristine surface, a smoothing is observed for the ion-irradiated surface. For the ion-irradiated surface the correlation length xi increases from 32 nm to 137 nm upon Ge deposition. Ge grows on Si surfaces in the Stranski-Krastanov or layer-plus-island mode where islands grow on a wetting layer of about three atomic layers. On the pristine surface the islands are predominantly of square or rectangular shape, while on the ion-irradiated surface the islands are nearly diamond shaped. Changes of adsorption behaviour of deposited atoms depending on the roughness exponent (or the fractal dimension) of the substrate surface are discussed.Comment: 5 pages, 2 figures and 1 tabl

    A Reaction Diffusion Model Of Pattern Formation In Clustering Of Adatoms On Silicon Surfaces

    Get PDF
    We study a reaction diffusion model which describes the formation of patterns on surfaces having defects. Through this model, the primary goal is to study the growth process of Ge on Si surface. We consider a two species reaction diffusion process where the reacting species are assumed to diffuse on the two dimensional surface with first order interconversion reaction occuring at various defect sites which we call reaction centers. Two models of defects, namely a ring defect and a point defect are considered separately. As reaction centers are assumed to be strongly localized in space, the proposed reaction-diffusion model is found to be exactly solvable. We use Green's function method to study the dynamics of reaction diffusion processes. Further we explore this model through Monte Carlo (MC) simulations to study the growth processes in the presence of a large number of defects. The first passage time statistics has been studied numerically. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4757592]Microelectronics Research Cente

    Zno 1-D nanostructures: low temperature synthesis and characterizations

    Get PDF
    ZnO is one of the most important semiconductors having a wide variety of applications in photonic, field emission and sensing devices. In addition, it exhibits a wide variety of morphologies in the nano regime that can be grown by tuning the growth habit of the ZnO crystal. Among various nanostructures, oriented 1-D nanoforms are particularly important for applications such as UV laser, sensors, UV LED, field emission displays, piezoelectric nanogenerator etc. We have developed a soft chemical approach to fabricate well-aligned arrays of various 1-D nanoforms like nanonails, nanowires and nanorods. The microstructural and photoluminescence properties of all the structures were investigated and tuned by varying the synthesis parameters. Field emission study from the aligned nanorod arrays exhibited high current density and a low turn-on field. These arrays also exhibited very strong UV emission and week defect emission. These structures can be utilized to fabricate efficient UV LEDs

    Size distribution of sputtered particles from Au nanoislands due to MeV self-ion bombardment

    Full text link
    Nanoisland gold films, deposited by vacuum evaporation of gold onto Si(100) substrates, were irradiated with 1.5 MeV Au2+^{2+} ions up to a fluence of 5×10145\times 10^{14} ions cm2^{-2} and at incidence angles up to 6060^{\circ} with respect to the surface normal. The sputtered particles were collected on carbon coated grids (catcher grid) during ion irradiation and were analyzed with transmission electron microscopy and Rutherford backscattering spectrometry. The average sputtered particle size and the areal coverage are determined from transmission electron microscopy measurements, whereas the amount of gold on the substrate is found by Rutherford backscattering spectrometry. The size distributions of larger particles (number of atoms/particle, nn \ge 1,000) show an inverse power-law with an exponent of \sim -1 in broad agreement with a molecular dynamics simulation of ion impact on cluster targets.Comment: 13 pages, 8 figures, Submitted for publication in JA
    corecore