5,373 research outputs found

    Constraints on the Neutrino Parameters from the `Rise-up' in the Boron Neutrino Spectrum at Low Energies

    Full text link
    The rise-up in boron neutrino spectrum at low energies has been studied within the framework of `pure LMA' scenario. Indirect bounds on the spectral `upturn' have been obtained from the available solar neutrino data. These bounds have been used to demonstrate the efficacy of the precision measurements of the `upturn' for further constraining the neutrino parameter space allowed by SNO salt phase data. The sterile neutrino flux has been constrained in the light of the recent 766.3 Ty KamLAND spectral data.Comment: Latex 10pages including 3 postscript figure

    Grazing Incidence X-Ray Standing Wave : A Novel Technique for Measuring Ultrasmall Diffusion Coefficients in Polymers

    Get PDF

    Ge growth on ion-irradiated Si self-affine fractal surfaces

    Get PDF
    We have carried out scanning tunneling microscopy experiments under ultrahigh vacuum condition to study the morphology of ultrathin Ge films eposited on pristine Si(100) and ion-irradiated Si(100) self-affine fractal surfaces. The pristine and the ion-irradiated Si(100) surface have roughness exponents of alpha=0.19+/-0.05 and alpha=0.82+/-0.04 respectively. These measurements were carried out on two halves of the same sample where only one half was ion-irradiated. Following deposition of a thin film of Ge (~6 A) the roughness exponents change to 0.11+/-0.04 and 0.99+/-0.06, respectively. Upon Ge deposition, while the roughness increases by more than an order of magnitude on the pristine surface, a smoothing is observed for the ion-irradiated surface. For the ion-irradiated surface the correlation length xi increases from 32 nm to 137 nm upon Ge deposition. Ge grows on Si surfaces in the Stranski-Krastanov or layer-plus-island mode where islands grow on a wetting layer of about three atomic layers. On the pristine surface the islands are predominantly of square or rectangular shape, while on the ion-irradiated surface the islands are nearly diamond shaped. Changes of adsorption behaviour of deposited atoms depending on the roughness exponent (or the fractal dimension) of the substrate surface are discussed.Comment: 5 pages, 2 figures and 1 tabl

    A Reaction Diffusion Model Of Pattern Formation In Clustering Of Adatoms On Silicon Surfaces

    Get PDF
    We study a reaction diffusion model which describes the formation of patterns on surfaces having defects. Through this model, the primary goal is to study the growth process of Ge on Si surface. We consider a two species reaction diffusion process where the reacting species are assumed to diffuse on the two dimensional surface with first order interconversion reaction occuring at various defect sites which we call reaction centers. Two models of defects, namely a ring defect and a point defect are considered separately. As reaction centers are assumed to be strongly localized in space, the proposed reaction-diffusion model is found to be exactly solvable. We use Green's function method to study the dynamics of reaction diffusion processes. Further we explore this model through Monte Carlo (MC) simulations to study the growth processes in the presence of a large number of defects. The first passage time statistics has been studied numerically. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4757592]Microelectronics Research Cente

    Zno 1-D nanostructures: low temperature synthesis and characterizations

    Get PDF
    ZnO is one of the most important semiconductors having a wide variety of applications in photonic, field emission and sensing devices. In addition, it exhibits a wide variety of morphologies in the nano regime that can be grown by tuning the growth habit of the ZnO crystal. Among various nanostructures, oriented 1-D nanoforms are particularly important for applications such as UV laser, sensors, UV LED, field emission displays, piezoelectric nanogenerator etc. We have developed a soft chemical approach to fabricate well-aligned arrays of various 1-D nanoforms like nanonails, nanowires and nanorods. The microstructural and photoluminescence properties of all the structures were investigated and tuned by varying the synthesis parameters. Field emission study from the aligned nanorod arrays exhibited high current density and a low turn-on field. These arrays also exhibited very strong UV emission and week defect emission. These structures can be utilized to fabricate efficient UV LEDs

    Replicating Nanostructures on Silicon by Low Energy Ion Beams

    Get PDF
    We report on a nanoscale patterning method on Si substrates using self-assembled metal islands and low-energy ion-beam irradiation. The Si nanostructures produced on the Si substrate have a one-to-one correspondence with the self-assembled metal (Ag, Au, Pt) nanoislands initially grown on the substrate. The surface morphology and the structure of the irradiated surface were studied by high-resolution transmission electron microscopy (HRTEM). TEM images of ion-beam irradiated samples show the formation of sawtooth-like structures on Si. Removing metal islands and the ion-beam induced amorphous Si by etching, we obtain a crystalline nanostructure of Si. The smallest structures emit red light when exposed to a UV light. The size of the nanostructures on Si is governed by the size of the self-assembled metal nanoparticles grown on the substrate for this replica nanopatterning. The method can easily be extended for tuning the size of the Si nanostructures by the proper choice of the metal nanoparticles and the ion energy in ion-irradiation. It is suggested that off-normal irradiation can also be used for tuning the size of the nanostructures.Comment: 12 pages, 7 figures, regular paper submitted to Nanotechnolog
    corecore