8,688 research outputs found
The path-coalescence transition and its applications
We analyse the motion of a system of particles subjected a random force
fluctuating in both space and time, and experiencing viscous damping. When the
damping exceeds a certain threshold, the system undergoes a phase transition:
the particle trajectories coalesce. We analyse this transition by mapping it to
a Kramers problem which we solve exactly. In the limit of weak random force we
characterise the dynamics by computing the rate at which caustics are crossed,
and the statistics of the particle density in the coalescing phase. Last but
not least we describe possible realisations of the effect, ranging from
trajectories of raindrops on glass surfaces to animal migration patterns.Comment: 4 pages, 3 figures; revised version, as publishe
Macromolecular separation through a porous surface
A new technique for the separation of macromolecules is proposed and
investigated. A thin mesh with pores comparable to the radius of gyration of a
free chain is used to filter chains according to their length. Without a field
it has previously been shown that the permeability decays as a power law with
chain length. However by applying particular configurations of pulsed fields,
it is possible to have a permeability that decays as an exponential. This
faster decay gives much higher resolution of separation. We also propose a
modified screen containing an array of holes with barb-like protrusions running
parallel to the surface. When static friction is present between the
macromolecule and the protrusion, some of the chains get trapped for long
durations of time. By using this and a periodic modulation of an applied
electric field, high resolution can be attained.Comment: 18 pages latex, 6 postscript figures, using psfi
Effect of electrical bias on spin transport across a magnetic domain wall
We present a theory of the current-voltage characteristics of a magnetic
domain wall between two highly spin-polarized materials, which takes into
account the effect of the electrical bias on the spin-flip probability of an
electron crossing the wall. We show that increasing the voltage reduces the
spin-flip rate, and is therefore equivalent to reducing the width of the domain
wall. As an application, we show that this effect widens the temperature window
in which the operation of a unipolar spin diode is nearly ideal.Comment: 11 pages, 3 figure
Simple scheme for implementing the Deutsch-Jozsa algorithm in thermal cavity
We present a simple scheme to implement the Deutsch-Jozsa algorithm based on
two-atom interaction in a thermal cavity. The photon-number-dependent parts in
the evolution operator are canceled with the strong resonant classical field
added. As a result, our scheme is immune to thermal field, and does not require
the cavity to remain in the vacuum state throughout the procedure. Besides,
large detuning between the atoms and the cavity is not necessary neither,
leading to potential speed up of quantum operation. Finally, we show by
numerical simulation that the proposed scheme is equal to demonstrate the
Deutsch-Jozsa algorithm with high fidelity.Comment: 7 pages, 4 figure
Empirical Uncertainty Estimators for Astrometry from Digital Databases
In order to understand the positional uncertainties of arbitrary objects in
several of the current major databases containing astrometric information, a
sample of extragalactic radio sources with precise positions in the
International Celestial Reference Frame (ICRF) is compared with the available
positions of their optical counterparts. The discrepancies between the radio
and various optical positions are used to derive empirical uncertainty
estimators for the USNO-A2.0, USNO-A1.0, Guide Star Selection System (GSSS)
images, and the first and second Digitized Sky Surveys (DSS-I and DSS-II). In
addition, an estimate of the uncertainty when the USNO-A2.0 catalog is
transferred to different image data is provided. These optical astrometric
frame uncertainties can in some cases be the dominant error term when
cross-identifying sources at different wavelengths.Comment: 12 pages including 2 figures and 1 table. Accepted for publication in
The Astronomical Journal, October 1999. Values in Table 1 for DSS I corrected
99-07-1
Spin Precession and Avalanches
In many magnetic materials, spin dynamics at short times are dominated by
precessional motion as damping is relatively small. In the limit of no damping
and no thermal noise, we show that for a large enough initial instability, an
avalanche can transition to an ergodic phase where the state is equivalent to
one at finite temperature, often above that for ferromagnetic ordering. This
dynamical nucleation phenomenon is analyzed theoretically. For small finite
damping the high temperature growth front becomes spread out over a large
region. The implications for real materials are discussed.Comment: 4 pages 2 figure
Conditional Quantum Dynamics and Logic Gates
Quantum logic gates provide fundamental examples of conditional quantum
dynamics. They could form the building blocks of general quantum information
processing systems which have recently been shown to have many interesting
non--classical properties. We describe a simple quantum logic gate, the quantum
controlled--NOT, and analyse some of its applications. We discuss two possible
physical realisations of the gate; one based on Ramsey atomic interferometry
and the other on the selective driving of optical resonances of two subsystems
undergoing a dipole--dipole interaction.Comment: 5 pages, RevTeX, two figures in a uuencoded, compressed fil
- …