8,688 research outputs found

    The path-coalescence transition and its applications

    Full text link
    We analyse the motion of a system of particles subjected a random force fluctuating in both space and time, and experiencing viscous damping. When the damping exceeds a certain threshold, the system undergoes a phase transition: the particle trajectories coalesce. We analyse this transition by mapping it to a Kramers problem which we solve exactly. In the limit of weak random force we characterise the dynamics by computing the rate at which caustics are crossed, and the statistics of the particle density in the coalescing phase. Last but not least we describe possible realisations of the effect, ranging from trajectories of raindrops on glass surfaces to animal migration patterns.Comment: 4 pages, 3 figures; revised version, as publishe

    Macromolecular separation through a porous surface

    Full text link
    A new technique for the separation of macromolecules is proposed and investigated. A thin mesh with pores comparable to the radius of gyration of a free chain is used to filter chains according to their length. Without a field it has previously been shown that the permeability decays as a power law with chain length. However by applying particular configurations of pulsed fields, it is possible to have a permeability that decays as an exponential. This faster decay gives much higher resolution of separation. We also propose a modified screen containing an array of holes with barb-like protrusions running parallel to the surface. When static friction is present between the macromolecule and the protrusion, some of the chains get trapped for long durations of time. By using this and a periodic modulation of an applied electric field, high resolution can be attained.Comment: 18 pages latex, 6 postscript figures, using psfi

    Effect of electrical bias on spin transport across a magnetic domain wall

    Get PDF
    We present a theory of the current-voltage characteristics of a magnetic domain wall between two highly spin-polarized materials, which takes into account the effect of the electrical bias on the spin-flip probability of an electron crossing the wall. We show that increasing the voltage reduces the spin-flip rate, and is therefore equivalent to reducing the width of the domain wall. As an application, we show that this effect widens the temperature window in which the operation of a unipolar spin diode is nearly ideal.Comment: 11 pages, 3 figure

    Simple scheme for implementing the Deutsch-Jozsa algorithm in thermal cavity

    Get PDF
    We present a simple scheme to implement the Deutsch-Jozsa algorithm based on two-atom interaction in a thermal cavity. The photon-number-dependent parts in the evolution operator are canceled with the strong resonant classical field added. As a result, our scheme is immune to thermal field, and does not require the cavity to remain in the vacuum state throughout the procedure. Besides, large detuning between the atoms and the cavity is not necessary neither, leading to potential speed up of quantum operation. Finally, we show by numerical simulation that the proposed scheme is equal to demonstrate the Deutsch-Jozsa algorithm with high fidelity.Comment: 7 pages, 4 figure

    Empirical Uncertainty Estimators for Astrometry from Digital Databases

    Get PDF
    In order to understand the positional uncertainties of arbitrary objects in several of the current major databases containing astrometric information, a sample of extragalactic radio sources with precise positions in the International Celestial Reference Frame (ICRF) is compared with the available positions of their optical counterparts. The discrepancies between the radio and various optical positions are used to derive empirical uncertainty estimators for the USNO-A2.0, USNO-A1.0, Guide Star Selection System (GSSS) images, and the first and second Digitized Sky Surveys (DSS-I and DSS-II). In addition, an estimate of the uncertainty when the USNO-A2.0 catalog is transferred to different image data is provided. These optical astrometric frame uncertainties can in some cases be the dominant error term when cross-identifying sources at different wavelengths.Comment: 12 pages including 2 figures and 1 table. Accepted for publication in The Astronomical Journal, October 1999. Values in Table 1 for DSS I corrected 99-07-1

    Spin Precession and Avalanches

    Full text link
    In many magnetic materials, spin dynamics at short times are dominated by precessional motion as damping is relatively small. In the limit of no damping and no thermal noise, we show that for a large enough initial instability, an avalanche can transition to an ergodic phase where the state is equivalent to one at finite temperature, often above that for ferromagnetic ordering. This dynamical nucleation phenomenon is analyzed theoretically. For small finite damping the high temperature growth front becomes spread out over a large region. The implications for real materials are discussed.Comment: 4 pages 2 figure

    Conditional Quantum Dynamics and Logic Gates

    Get PDF
    Quantum logic gates provide fundamental examples of conditional quantum dynamics. They could form the building blocks of general quantum information processing systems which have recently been shown to have many interesting non--classical properties. We describe a simple quantum logic gate, the quantum controlled--NOT, and analyse some of its applications. We discuss two possible physical realisations of the gate; one based on Ramsey atomic interferometry and the other on the selective driving of optical resonances of two subsystems undergoing a dipole--dipole interaction.Comment: 5 pages, RevTeX, two figures in a uuencoded, compressed fil
    corecore