9 research outputs found

    NO2 inhalation induces maturation of pulmonary CD11c+ cells that promote antigenspecific CD4+ T cell polarization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitrogen dioxide (NO<sub>2</sub>) is an air pollutant associated with poor respiratory health, asthma exacerbation, and an increased likelihood of inhalational allergies. NO<sub>2 </sub>is also produced endogenously in the lung during acute inflammatory responses. NO<sub>2 </sub>can function as an adjuvant, allowing for allergic sensitization to an innocuous inhaled antigen and the generation of an antigen-specific Th2 immune response manifesting in an allergic asthma phenotype. As CD11c<sup>+ </sup>antigen presenting cells are considered critical for naΓ―ve T cell activation, we investigated the role of CD11c<sup>+ </sup>cells in NO<sub>2</sub>-promoted allergic sensitization.</p> <p>Methods</p> <p>We systemically depleted CD11c<sup>+ </sup>cells from transgenic mice expressing a simian diphtheria toxin (DT) receptor under of control of the CD11c promoter by administration of DT. Mice were then exposed to 15 ppm NO<sub>2 </sub>followed by aerosolized ovalbumin to promote allergic sensitization to ovalbumin and were studied after subsequent inhaled ovalbumin challenges for manifestation of allergic airway disease. In addition, pulmonary CD11c<sup>+ </sup>cells from wildtype mice were studied after exposure to NO<sub>2 </sub>and ovalbumin for cellular phenotype by flow cytometry and <it>in vitro </it>cytokine production.</p> <p>Results</p> <p>Transient depletion of CD11c<sup>+ </sup>cells during sensitization attenuated airway eosinophilia during allergen challenge and reduced Th2 and Th17 cytokine production. Lung CD11c<sup>+ </sup>cells from wildtype mice exhibited a significant increase in MHCII, CD40, and OX40L expression 2 hours following NO<sub>2 </sub>exposure. By 48 hours, CD11c<sup>+</sup>MHCII<sup>+ </sup>DCs within the mediastinal lymph node (MLN) expressed maturation markers, including CD80, CD86, and OX40L. CD11c<sup>+</sup>CD11b<sup>- </sup>and CD11c<sup>+</sup>CD11b<sup>+ </sup>pulmonary cells exposed to NO<sub>2 </sub><it>in vivo </it>increased uptake of antigen 2 hours post exposure, with increased ova-Alexa 647<sup>+ </sup>CD11c<sup>+</sup>MHCII<sup>+ </sup>DCs present in MLN from NO<sub>2</sub>-exposed mice by 48 hours. Co-cultures of ova-specific CD4<sup>+ </sup>T cells from naΓ―ve mice and CD11c<sup>+ </sup>pulmonary cells from NO<sub>2</sub>-exposed mice produced IL-1, IL-12p70, and IL-6 <it>in vitro </it>and augmented antigen-induced IL-5 production.</p> <p>Conclusions</p> <p>CD11c<sup>+ </sup>cells are critical for NO<sub>2</sub>-promoted allergic sensitization. NO<sub>2 </sub>exposure causes pulmonary CD11c<sup>+ </sup>cells to acquire a phenotype capable of increased antigen uptake, migration to the draining lymph node, expression of MHCII and co-stimulatory molecules required to activate naΓ―ve T cells, and secretion of polarizing cytokines to shape a Th2/Th17 response.</p

    Allergen Uptake, Activation, and IL-23 Production by Pulmonary Myeloid DCs Drives Airway Hyperresponsiveness in Asthma-Susceptible Mice

    Get PDF
    Maladaptive, Th2-polarized inflammatory responses are integral to the pathogenesis of allergic asthma. As regulators of T cell activation, dendritic cells (DCs) are important mediators of allergic asthma, yet the precise signals which render endogenous DCs β€œpro-asthmatic”, and the extent to which these signals are regulated by the pulmonary environment and host genetics, remains unclear. Comparative phenotypic and functional analysis of pulmonary DC populations in mice susceptible (A/J), or resistant (C3H) to experimental asthma, revealed that susceptibility to airway hyperresponsiveness is associated with preferential myeloid DC (mDC) allergen uptake, and production of Th17-skewing cytokines (IL-6, IL-23), whereas resistance is associated with increased allergen uptake by plasmacytoid DCs. Surprisingly, adoptive transfer of syngeneic HDM-pulsed bone marrow derived mDCs (BMDCs) to the lungs of C3H mice markedly enhanced lung IL-17A production, and rendered them susceptible to allergen-driven airway hyperresponsiveness. Characterization of these BMDCs revealed levels of antigen uptake, and Th17 promoting cytokine production similar to that observed in pulmonary mDCs from susceptible A/J mice. Collectively these data demonstrate that the lung environment present in asthma-resistant mice promotes robust pDC allergen uptake, activation, and limits Th17-skewing cytokine production responsible for driving pathologic T cell responses central to the development of allergen-induced airway hyperresponsiveness

    CD28/CTLA4 double deficient mice demonstrate crucial role for B7 co-stimulation in the induction of allergic lower airways disease

    No full text
    Background The existence of a third B7-1/B7-2 receptor was postulated in a recent study using a novel mouse strain lacking both CD28 and CTLA4 (CD28/CTLA4(-/-)).Objective In the present study, it was investigated if T cell co-stimulation via the putative B7-1/B7-2 receptor plays a role in the induction of Th2-mediated asthma manifestations in mice.Methods BALB/c wild-type, CD28/CTLA4(-/-) and B7-1/B7-2(-/-) mice were sensitized and aerosol challenged with ovalbumin (OVA).Results At 24 h after the last aerosol, wild-type mice showed airway hyper-responsiveness in vivo and up-regulated levels of serum OVA-specific IgE compared with the situation shortly before OVA challenge. In addition, eosinophil numbers and IL-5 levels in the broncho-alveolar lavage fluid and Th2 cytokine production by lung cells upon OVA re-stimulation in vitro were observed. In agreement with an earlier study, we failed to induce any of the asthma manifestations in B7-1/B7-2(-/-) mice. Importantly, also CD28/CTLA4(-/-) mice showed no asthma manifestations upon OVA sensitization and challenge.Conclusion These data clearly demonstrate that T cell co-stimulation via the putative B7-1/B7-2 receptor appears to have no role in the induction of Th2-mediated asthma manifestations in this murine model and, conversely, that CD28 signalling is crucial.</p
    corecore