104 research outputs found
Resolvent Estimates in L^p for the Stokes Operator in Lipschitz Domains
We establish the resolvent estimates for the Stokes operator in
Lipschitz domains in , for . The result, in particular, implies that the Stokes operator in a
three-dimensional Lipschitz domain generates a bounded analytic semigroup in
for (3/2)-\varep < p< 3+\epsilon. This gives an affirmative answer to a
conjecture of M. Taylor.Comment: 28 page. Minor revision was made regarding the definition of the
Stokes operator in Lipschitz domain
Some genus 3 curves with many points
Using an explicit family of plane quartic curves, we prove the existence of a
genus 3 curve over any finite field of characteristic 3 whose number of
rational points stays within a fixed distance from the Hasse-Weil-Serre upper
bound. We also provide an intrinsic characterization of so-called Legendre
elliptic curves
Dichotomal effect of space flight-associated microgravity on stress-activated protein kinases in innate immunity
Space flight strongly moderates human immunity but is in general well tolerated. Elucidation of the mechanisms by which zero gravity interacts with human immunity may provide clues for developing rational avenues to deal with exaggerated immune responses, e.g. as in autoimmune disease. Using two sounding rockets and one manned Soyuz launch, the influence of space flight on immunological signal transduction provoked by lipopolysaccharide (LPS) stimulation was investigated in freshly isolated peripheral blood monocytes and was compared to samples obtained from on-board centrifuge-loaded 1a'...g controls. The effect of microgravity on immunological signal transduction is highly specific, since LPS dependent Jun-N-terminal kinase activation is impaired in the 0a'...g condition, while the corresponding LPS dependent activation of p38 MAP kinase remains unaffected. Thus our results identify Jun-N-terminal kinase as a relevant target in immunity for microgravity and support using Jun-N-terminal kinase specific inhibitors for combating autoimmune disease
What is the potential benefit of pre-hospital extracorporeal cardiopulmonary resuscitation for patients with an out-of-hospital cardiac arrest?:A predictive modelling study
AIM: In this predictive modelling study we aimed to investigate how many patients with an out-of-hospital cardiac arrest (OHCA) would benefit from pre-hospital as opposed to in-hospital initiation of extracorporeal cardiopulmonary resuscitation (ECPR).METHODS: A temporal spatial analysis of Utstein data was performed for all adult patients with a non-traumatic OHCA attended by three emergency medical services (EMS) covering the north of the Netherlands during a one-year period. Patients were considered potentially eligible for ECPR if they had a witnessed arrest with immediate bystander CPR, an initial shockable rhythm (or signs of life during resuscitation) and could be presented in an ECPR-centre within 45 minutes of the arrest. Endpoint of interest was defined as the hypothetical number of ECPR eligible patients after 10, 15 and 20 minutes of conventional CPR and upon (hypothetical) arrival in an ECPR-centre as a fraction of the total number of OHCA patients attended by EMS.RESULTS: During the study period 622 OHCA patients were attended, of which 200 (32%) met ECPR eligibility criteria upon EMS arrival. The optimal transition point between conventional CPR and ECPR was found to be after 15 minutes. Hypothetical intra-arrest transport of all patients in whom no return of spontaneous circulation (ROSC) was obtained after that point (n = 84) would have yielded 16/622 (2.5%) patients being potentially ECPR eligible upon hospital arrival (average low-flow time 52 minutes), whereas on-scene initiation of ECPR would have resulted in 84/622 (13.5%) potential candidates (average estimated low-flow time 24 minutes before cannulation).CONCLUSION: Even in healthcare systems with relatively short transport distances to hospital, consideration should be given to pre-hospital initiation of ECPR for OHCA as it shortens low-flow time and increases the number of potentially eligible patients.</p
On multiplicities in length spectra of arithmetic hyperbolic three-orbifolds
Asymptotic laws for mean multiplicities of lengths of closed geodesics in
arithmetic hyperbolic three-orbifolds are derived. The sharpest results are
obtained for non-compact orbifolds associated with the Bianchi groups SL(2,o)
and some congruence subgroups. Similar results hold for cocompact arithmetic
quaternion groups, if a conjecture on the number of gaps in their length
spectra is true. The results related to the groups above give asymptotic lower
bounds for the mean multiplicities in length spectra of arbitrary arithmetic
hyperbolic three-orbifolds. The investigation of these multiplicities is
motivated by their sensitive effect on the eigenvalue spectrum of the
Laplace-Beltrami operator on a hyperbolic orbifold, which may be interpreted as
the Hamiltonian of a three-dimensional quantum system being strongly chaotic in
the classical limit.Comment: 29 pages, uuencoded ps. Revised version, to appear in NONLINEARIT
Integral potential method for a transmission problem with Lipschitz interface in R^3 for the Stokes and DarcyβForchheimerβBrinkman PDE systems
The purpose of this paper is to obtain existence and uniqueness results in weighted Sobolev spaces for transmission problems for the non-linear Darcy-Forchheimer-Brinkman system and the linear Stokes system in two complementary Lipschitz domains in R3, one of them is a bounded Lipschitz domain with connected boundary, and the other one is the exterior Lipschitz domain R3 n. We exploit a layer potential method for the Stokes and Brinkman systems combined with a fixed point theorem in order to show the desired existence and uniqueness results, whenever the given data are suitably small in some weighted Sobolev spaces and boundary Sobolev spaces
A Novel Pzg-NURF Complex Regulates Notch Target Gene Activity
The Putzig (Pzg) protein is associated with the NURF nucleosome remodeling complex, thereby promoting Notch target gene expression. Our findings suggest a novel Pzg-NURF complex that is responsible for the epigenetic regulation of Notch target genes
A new strategy for isolating genes controlling dosage compensation in Drosophila using a simple epigenetic mosaic eye phenotype
<p>Abstract</p> <p>Background</p> <p>The <it>Drosophila </it>Male Specific Lethal (MSL) complex contains chromatin modifying enzymes and non-coding <it>roX </it>RNA. It paints the male X at hundreds of bands where it acetylates histone H4 at lysine 16. This epigenetic mark increases expression from the single male X chromosome approximately twofold above what gene-specific factors produce from each female X chromosome. This equalises X-linked gene expression between the sexes. Previous screens for components of dosage compensation relied on a distinctive male-specific lethal phenotype.</p> <p>Results</p> <p>Here, we report a new strategy relying upon an unusual male-specific mosaic eye pigmentation phenotype produced when the MSL complex acts upon autosomal <it>roX1 </it>transgenes. Screening the second chromosome identified at least five loci, two of which are previously described components of the MSL complex. We focused our analysis on the modifier alleles of MSL1 and MLE (for 'maleless'). The MSL1 lesions are not simple nulls, but rather alter the PEHE domain that recruits the MSL3 chromodomain and MOF ('males absent on first') histone acetyltransferase subunits to the complex. These mutants are compromised in their ability to recruit MSL3 and MOF, dosage compensate the X, and support long distance spreading from <it>roX1 </it>transgenes. Yet, paradoxically, they were isolated because they somehow increase MSL complex activity immediately around <it>roX1 </it>transgenes in combination with wild-type MSL1 subunits.</p> <p>Conclusions</p> <p>We propose that these diverse phenotypes arise from perturbations in assembly of MSL subunits onto nascent <it>roX </it>transcripts. This strategy is a promising alternative route for identifying previously unknown components of the dosage compensation pathway and novel alleles of known MSL proteins.</p
Stress-Induced PARP Activation Mediates Recruitment of Drosophila Mi-2 to Promote Heat Shock Gene Expression
Eukaryotic cells respond to genomic and environmental stresses, such as DNA damage and heat shock (HS), with the synthesis of poly-[ADP-ribose] (PAR) at specific chromatin regions, such as DNA breaks or HS genes, by PAR polymerases (PARP). Little is known about the role of this modification during cellular stress responses. We show here that the nucleosome remodeler dMi-2 is recruited to active HS genes in a PARPβdependent manner. dMi-2 binds PAR suggesting that this physical interaction is important for recruitment. Indeed, a dMi-2 mutant unable to bind PAR does not localise to active HS loci in vivo. We have identified several dMi-2 regions which bind PAR independently in vitro, including the chromodomains and regions near the N-terminus containing motifs rich in K and R residues. Moreover, upon HS gene activation, dMi-2 associates with nascent HS gene transcripts, and its catalytic activity is required for efficient transcription and co-transcriptional RNA processing. RNA and PAR compete for dMi-2 binding in vitro, suggesting a two step process for dMi-2 association with active HS genes: initial recruitment to the locus via PAR interaction, followed by binding to nascent RNA transcripts. We suggest that stress-induced chromatin PARylation serves to rapidly attract factors that are required for an efficient and timely transcriptional response
RSF Governs Silent Chromatin Formation via Histone H2Av Replacement
Human remodeling and spacing factor (RSF) consists of a heterodimer of Rsf-1 and hSNF2H, a counterpart of Drosophila ISWI. RSF possesses not only chromatin remodeling activity but also chromatin assembly activity in vitro. While no other single factor can execute the same activities as RSF, the biological significance of RSF remained unknown. To investigate the in vivo function of RSF, we generated a mutant allele of Drosophila Rsf-1 (dRsf-1). The dRsf-1 mutant behaved as a dominant suppressor of position effect variegation. In dRsf-1 mutant, the levels of histone H3K9 dimethylation and histone H2A variant H2Av were significantly reduced in an euchromatic region juxtaposed with heterochromatin. Furthermore, using both genetic and biochemical approaches, we demonstrate that dRsf-1 interacts with H2Av and the H2Av-exchanging machinery Tip60 complex. These results suggest that RSF contributes to histone H2Av replacement in the pathway of silent chromatin formation
- β¦