64 research outputs found

    The pharmacology of voltage-gated sodium channel activators

    Get PDF
    Toxins and venom components that target voltage-gated sodium (Na) channels have evolved numerous times due to the importance of this class of ion channels in the normal physiological function of peripheral and central neurons as well as cardiac and skeletal muscle. Na channel activators in particular have been isolated from the venom of spiders, wasps, snakes, scorpions, cone snails and sea anemone and are also produced by plants, bacteria and algae. These compounds have provided key insight into the molecular structure, function and pathophysiological roles of Na channels and are important tools due to their at times exquisite subtype-selectivity. We review the pharmacology of Na channel activators with particular emphasis on mammalian isoforms and discuss putative applications for these compounds. This article is part of the Special Issue entitled ‘Venom-derived Peptides as Pharmacological Tools.

    Toxins as tools: fingerprinting neuronal pharmacology

    Get PDF
    Toxins have been used as tools for decades to study the structure and function of neuronal ion channels and receptors. The biological origin of these toxins varies from single cell organisms, including bacteria and algae, to complex multicellular organisms, including a wide variety of plants and venomous animals. Toxins are a structurally and functional diverse group of compounds that often modulate neuronal function by interacting with an ion channel or receptor. Many of these toxins display high affinity and exquisite selectivity, making them valuable tools to probe the structure and function of neuronal ion channels and receptors. This review article provides an overview of the experimental techniques used to assess the effects that toxins have on neuronal function, as well as discussion on toxins that have been used as tools, with a focus on toxins that target voltage-gated and ligand-gated ion channels

    Analgesic treatment of ciguatoxin-induced cold allodynia

    Get PDF
    Ciguatera, the most common form of nonbacterial ichthyosarcotoxism, is caused by consumption of fish that have bioaccumulated the polyether sodium channel activator ciguatoxin. The neurological symptoms of ciguatera include distressing, often persistent sensory disturbances such as paraesthesias and the pathognomonic symptom of cold allodynia. We show that intracutaneous administration of ciguatoxin in humans elicits a pronounced axon-reflex flare and replicates cold allodynia. To identify compounds able to inhibit ciguatoxin-induced Na-v responses, we developed a novel in vitro ciguatoxin assay using the human neuroblastoma cell line SH-SY5Y. Pharmacological characterisation of this assay demonstrated a major contribution of Na(v)1.2 and Na(v)1.3, but not Na(v)1.7, to ciguatoxin-induced Ca2+ responses. Clinically available Nav inhibitors, as well as the K(v)7 agonist flupirtine, inhibited tetrodotoxin-sensitive ciguatoxin-evoked responses. To establish their in vivo efficacy, we used a novel animal model of ciguatoxin-induced cold allodynia. However, differences in the efficacy of these compounds to reverse ciguatoxin-induced cold allodynia did not correlate with their potency to inhibit ciguatoxin-induced responses in SH-SY5Y cells or at heterologously expressed Nav1.3, Na(v)1.6, Na(v)1.7, or Na(v)1.8, indicating cold allodynia might be more complex than simple activation of Na-v channels. These findings highlight the need for suitable animal models to guide the empiric choice of analgesics, and suggest that lamotrigine and flupirtine could be potentially useful for the treatment of ciguatera. (C) 2013 International Association for the Study of Pain. Published by Elsevier B. V. All rights reserved

    Mapping the molecular surface of the analgesic NaV1.7-selective peptide Pn3a reveals residues essential for membrane and channel interactions

    Get PDF
    Compelling human genetic studies have identified the voltage-gated sodium channel NaV1.7 as a promising therapeutic target for the treatment of pain. The analgesic spider venom-derived peptide µtheraphotoxin-Pn3a is an exceptionally potent and selective inhibitor of NaV1.7, however, little is known about the structure-activity relationships or channel interactions that define this activity. We rationally designed seventeen Pn3a analogues and determined their activity at hNaV1.7 using patchclamp electrophysiology. The positively charged amino acids K22 and K24 were identified as crucial for Pn3a activity, with molecular modeling identifying interactions of these residues with the S3-S4 loop of domain II of hNaV1.7. Removal of hydrophobic residues Y4, Y27 and W30 led to a loss of potency (>250-fold), while replacement of negatively charged D1 and D8 residues with a positively charged lysine led to increased potencies (>13-fold), likely through alterations in membrane lipid interactions. Mutating D8 to an asparagine led to the greatest improvement in Pn3a potency at NaV1.7 (20-fold), whilst maintaining >100-fold selectivity over the major off-targets NaV1.4, NaV1.5 and NaV1.6. The Pn3a[D8N] mutant retained analgesic activity in vivo, significantly attenuating mechanical allodynia in a clinically relevant mouse model of post-surgical pain at doses 3-fold lower than wild-type Pn3a, without causing motor adverse effects. Results from this study will facilitate future rational design of potent and selective peptidic NaV1.7 inhibitors for the development of more efficacious and safer analgesics but also to further investigate the involvement of NaV1.7 in pain

    Assessment of the TRPM8 inhibitor AMTB in breast cancer cells and its identification as an inhibitor of voltage gated sodium channels

    Get PDF
    To assess levels of the calcium permeable transient receptor potential cation channel, subfamily melastatin, member 8 (TRPM8) in breast cancer molecular subtypes and to assess the consequences of TRPM8 pharmacological inhibition with AMTB (an inhibitor of TRPM8) on breast cancer cell lines.Cell viability and migration of breast cancer cells was determined using MTS assays and wound healing assays, respectively. RNA-Seq analysis of breast tumours and qPCR in breast cancer cell lines were used to assess mRNA levels of ion channels. Membrane potential assays were employed to assess the effects of AMTB against specific voltage gated sodium channels (Na).TRPM8 levels were significantly higher in breast cancers of the basal molecular subtype. AMTB decreased viable cell number in MDA-MB-231 and SK-BR-3 breast cancer cell lines (30 and 100 μM), and also reduced the migration of MDA-MB-231 cells (30 μM). However, these effects were independent of TRPM8, as no TRPM8 mRNA was detected in MDA-MB-231 cells. AMTB was identified as an inhibitor of Naisoforms. Na1.1-1.9 were expressed in a number of breast cancer cell lines, with Na1.5 mRNA highest in MDA-MB-231 cells compared to the other breast cancer cell lines assessed.TRPM8 levels may be elevated in basal breast cancers, however, TRPM8 expression appears to be lost in many breast cancer cell lines. Some of the effects of AMTB attributed to TRPM8 may be due to effects on Nachannels

    The Tarantula Venom Peptide Eo1a Binds to the Domain II S3-S4 Extracellular Loop of Voltage-Gated Sodium Channel NaV1.8 to Enhance Activation

    Get PDF
    Venoms from cone snails and arachnids are a rich source of peptide modulators of voltage-gated sodium (NaV) channels, however relatively few venom-derived peptides with activity at the mammalian NaV1.8 subtype have been isolated. Here, we describe the discovery and functional characterisation of β-theraphotoxin-Eo1a, a peptide from the venom of the Tanzanian black and olive baboon tarantula Encyocratella olivacea that modulates NaV1.8. Eo1a is a 37-residue peptide that increases NaV1.8 peak current (EC50 894 ± 146 nM) and causes a large hyperpolarising shift in both the voltage-dependence of activation (ΔV50-20.5 ± 1.2 mV) and steady-state fast inactivation (ΔV50-15.5 ± 1.8 mV). At a concentration of 10 μM, Eo1a has varying effects on the peak current and channel gating of NaV1.1-NaV1.7, although its activity is most pronounced at NaV1.8. Investigations into the binding site of Eo1a using NaV1.7/NaV1.8 chimeras revealed a critical contribution of the DII S3-S4 extracellular loop of NaV1.8 to toxin activity. Results from this work may form the basis for future studies that lead to the rational design of spider venom-derived peptides with improved potency and selectivity at NaV1.8

    Multiple sodium channel isoforms mediate the pathological effects of Pacific ciguatoxin-1

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/Human intoxication with the seafood poison ciguatoxin, a dinoflagellate polyether that activates voltage-gated sodium channels (NaV), causes ciguatera, a disease characterised by gastrointestinal and neurological disturbances. We assessed the activity of the most potent congener, Pacific ciguatoxin-1 (P-CTX-1), on NaV1.1–1.9 using imaging and electrophysiological approaches. Although P-CTX-1 is essentially a non-selective NaV toxin and shifted the voltage-dependence of activation to more hyperpolarising potentials at all NaV subtypes, an increase in the inactivation time constant was observed only at NaV1.8, while the slope factor of the conductance-voltage curves was significantly increased for NaV1.7 and peak current was significantly increased for NaV1.6. Accordingly, P-CTX-1-induced visceral and cutaneous pain behaviours were significantly decreased after pharmacological inhibition of NaV1.8 and the tetrodotoxin-sensitive isoforms NaV1.7 and NaV1.6, respectively. The contribution of these isoforms to excitability of peripheral C- and A-fibre sensory neurons, confirmed using murine skin and visceral single-fibre recordings, reflects the expression pattern of NaV isoforms in peripheral sensory neurons and their contribution to membrane depolarisation, action potential initiation and propagation

    Pain-causing stinging nettle toxins target TMEM233 to modulate NaV1.7 function

    Get PDF
    Voltage-gated sodium (NaV) channels are critical regulators of neuronal excitability and are targeted by many toxins that directly interact with the pore-forming α subunit, typically via extracellular loops of the voltage-sensing domains, or residues forming part of the pore domain. Excelsatoxin A (ExTxA), a pain-causing knottin peptide from the Australian stinging tree Dendrocnide excelsa, is the first reported plant-derived NaV channel modulating peptide toxin. Here we show that TMEM233, a member of the dispanin family of transmembrane proteins expressed in sensory neurons, is essential for pharmacological activity of ExTxA at NaV channels, and that co-expression of TMEM233 modulates the gating properties of NaV1.7. These findings identify TMEM233 as a previously unknown NaV1.7-interacting protein, position TMEM233 and the dispanins as accessory proteins that are indispensable for toxin-mediated effects on NaV channel gating, and provide important insights into the function of NaV channels in sensory neurons

    The thermal probe test: a novel behavioral assay to quantify thermal paw withdrawal thresholds in mice

    No full text
    Rodent models are frequently used to improve our understanding of the molecular mechanisms of pain and to develop novel analgesics. Robust behavioral assays that quantify nociceptive responses to different sensory modalities, such has heat, are therefore needed. Here, we describe a novel behavioral assay to quantify thermal paw withdrawal thresholds in mice, called the thermal probe test, and compared it with other methods commonly used to measure heat thresholds, namely the Hargreaves test and the dynamic and conventional hot plate tests. In the thermal probe test, a slightly rounded 2.5\ua0mm diameter metal probe that heats on contact at a rate of 2.5°C/sec, is applied to the plantar surface of the hind paw in mice at a starting temperature of ∼37°C, and the temperature at which a withdrawal response occurs, designated as the paw withdrawal temperature, is automatically recorded. The thermal probe test is effective at quantifying thermal allodynia in carrageenan-induced inflammation (paw withdrawal temperature 3\ua0h: contralateral, 50.3 ± 0.6°C; ipsilateral, 43.1 ± 1.0°C), burns injury (paw withdrawal temperature 3 d: contralateral, 50.8 ± 0.5°C; ipsilateral, 43.2 ± 0.6°C) and after topical capsaicin (paw withdrawal temperature: vehicle control, 49.7 ± 0.6°C; capsaicin, 44.8 ± 1.2°C), giving comparable results to the Hargreaves test. In addition, the thermal probe test can detect opioid mediated analgesia in carrageenan-induced inflammation. Therefore the thermal probe test is a novel behavioral assay effective for quantifying thermal allodynia and analgesia in mouse models of pain
    • …
    corecore