18 research outputs found

    The role of ascorbate in antioxidant protection of biomembranes: Interaction with vitamin E and coenzyme Q

    Full text link
    One of the vital roles of ascorbic acid (vitamin C) is to act as an antioxidant to protect cellular components from free radical damage. Ascorbic acid has been shown to scavenge free radicals directly in the aqueous phases of cells and the circulatory system. Ascorbic acid has also been proven to protect membrane and other hydrophobic compartments from such damage by regenerating the antioxidant form of vitamin E. In addition, reduced coenzyme Q, also a resident of hydrophobic compartments, interacts with vitamin E to regenerate its antioxidant form. The mechanism of vitamin C antioxidant function, the myriad of pathologies resulting from its clinical deficiency, and the many health benefits it provides, are reviewed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44796/1/10863_2004_Article_BF00762775.pd

    Optimization, kinetic, and scaling-up of solvent-free lipase-catalyzed synthesis of ethylene glycol oleate emollient ester

    Get PDF
    The use of enzymatic catalysts is an alternative to chemical catalysts as they can help to obtain products with less environmental impact, considered sustainable within the concept of green chemistry. The optimization, kinetic, lipase reuse, and scale-up of enzymatic production of ethylene glycol oleate in the batch mode were carried out using the NS 88011 lipase in a solvent-free system. For the optimization step, a 23 Central Composite Design was used and the optimized condition for the ethylene glycol oleate production, with conversions above 99%, was at 70 °C, 600 rpm, substrates molar ratio of 1:2, 1 wt% of NS 88011 in 32 H of reaction. Kinetic tests were also carried out with different amounts of enzyme, and it showed that by decreasing the amount of the enzyme, the conversion also decreases. The lipase reuse showed good conversions until the second cycle of use, after which it had a progressive reduction reaching 83% in the fourth cycle of use. The scale-up (ninefold increase) showed promising results, with conversion above 99%, achieving conversions similar to small-scale reactions. Therefore, this work proposed an environmentally safe route to produce an emollient ester using a low-cost biocatalyst in a solvent-free system

    BDF/SHiP at the ECN3 high-intensity beam facility

    No full text
    The BDF/SHiP collaboration has proposed a general-purpose intensity-frontier experimental facility operating in beam-dump mode at the CERN SPS accelerator to search for feebly interacting GeV-scale particles and to perform measurements in neutrino physics. CERN is uniquely suited for this programme owing to the proton energy and yield available at the SPS. This puts BDF/SHiP in a unique position worldwide to make a breakthrough in a theoretically and experimentally attractive range of the FIP parameter space that is not accessible to other experiments. The existing ECN3 experimental facility makes it possible to implement BDF at a fraction of the cost of the original proposal, without compromising on the physics scope and the physics reach. SHiP has demonstrated the feasibility to construct a large-scale, versatile discovery experiment capable of coping with 4×10194\times 10^{19} protons per year at 400 GeV/c and ensuring a < 1-event background for the FIP decay search even up to 6×10206\times 10^{20} PoT. With the feasibility of the facility and the detector proven, the BDF/SHiP collaboration are ready to proceed with the TDR studies and commence implementation in CERN’s Long Shutdown 3. During the operational lifetime of BDF/SHiP, several prominent opportunities for upgrades and extensions are open, such as the use of a LAr TPC, a synergistic tau flavour violation experiment, and exploiting the secondary mixed-field radiation from the proton target for nuclear and astrophysics, as well as for material testing

    BDF/SHiP at the ECN3 high-intensity beam facility

    No full text
    The BDF/SHiP collaboration has proposed a general-purpose intensity-frontier experimental facility operating in beam-dump mode at the CERN SPS accelerator to search for feebly interacting GeV-scale particles and to perform measurements in neutrino physics. BDF/SHiP complements the world-wide program of New Physics searches by exploring a large region of parameter space which cannot be addressed by other experiments, and which reaches several orders of magnitude below existing bounds. The SHiP detector is sensitive both to decay and scattering signatures of models with heavy neutral leptons, dark photons, dark scalars, axion-like particles, light dark matter and other feebly interacting particles. In neutrino physics, BDF/SHiP can perform unprecedented measurements with tau neutrinos and neutrino-induced charm production. Following the Technical Proposal submitted in 2015, the subsequent three-year Comprehensive Design Study (CDS), and the recent study of BDF/SHiP in existing beam facilities around the SPS, this paper restates the motivation and reports on the implementation and physics performance of BDF/SHiP in the SPS ECN3 high-intensity beam facility

    Biochemie des Krebsgeschehens

    No full text
    corecore