60 research outputs found
Inviscid Large deviation principle and the 2D Navier Stokes equations with a free boundary condition
Using a weak convergence approach, we prove a LPD for the solution of 2D
stochastic Navier Stokes equations when the viscosity converges to 0 and the
noise intensity is multiplied by the square root of the viscosity. Unlike
previous results on LDP for hydrodynamical models, the weak convergence is
proven by tightness properties of the distribution of the solution in
appropriate functional spaces
Non-autonomous stochastic evolution equations and applications to stochastic partial differential equations
In this paper we study the following non-autonomous stochastic evolution
equation on a UMD Banach space with type 2,
{equation}\label{eq:SEab}\tag{SE} {{aligned} dU(t) & = (A(t)U(t) + F(t,U(t)))
dt + B(t,U(t)) dW_H(t), \quad t\in [0,T],
U(0) & = u_0. {aligned}. {equation}
Here are unbounded operators with domains
which may be time dependent. We assume that
satisfies the conditions of Acquistapace and Terreni. The
functions and are nonlinear functions defined on certain interpolation
spaces and is the initial value. is a cylindrical Brownian
motion on a separable Hilbert space .
Under Lipschitz and linear growth conditions we show that there exists a
unique mild solution of \eqref{eq:SEab}. Under assumptions on the interpolation
spaces we extend the factorization method of Da Prato, Kwapie\'n, and Zabczyk,
to obtain space-time regularity results for the solution of
\eqref{eq:SEab}. For Hilbert spaces we obtain a maximal regularity result.
The results improve several previous results from the literature.
The theory is applied to a second order stochastic partial differential
equation which has been studied by Sanz-Sol\'e and Vuillermot. This leads to
several improvements of their result.Comment: Accepted for publication in Journal of Evolution Equation
Regularity of Ornstein-Uhlenbeck processes driven by a L{\'e}vy white noise
The paper is concerned with spatial and time regularity of solutions to
linear stochastic evolution equation perturbed by L\'evy white noise "obtained
by subordination of a Gaussian white noise". Sufficient conditions for spatial
continuity are derived. It is also shown that solutions do not have in general
\cadlag modifications. General results are applied to equations with fractional
Laplacian. Applications to Burgers stochastic equations are considered as well.Comment: This is an updated version of the same paper. In fact, it has already
been publishe
Stochastic evolution equations driven by Liouville fractional Brownian motion
Let H be a Hilbert space and E a Banach space. We set up a theory of
stochastic integration of L(H,E)-valued functions with respect to H-cylindrical
Liouville fractional Brownian motions (fBm) with arbitrary Hurst parameter in
the interval (0,1). For Hurst parameters in (0,1/2) we show that a function
F:(0,T)\to L(H,E) is stochastically integrable with respect to an H-cylindrical
Liouville fBm if and only if it is stochastically integrable with respect to an
H-cylindrical fBm with the same Hurst parameter. As an application we show that
second-order parabolic SPDEs on bounded domains in \mathbb{R}^d, driven by
space-time noise which is white in space and Liouville fractional in time with
Hurst parameter in (d/4,1) admit mild solution which are H\"older continuous
both and space.Comment: To appear in Czech. Math.
The Fuchsian differential equation of the square lattice Ising model susceptibility
Using an expansion method in the variables that appear in the
-dimensional integrals representing the -particle contribution to the
Ising square lattice model susceptibility , we generate a long series of
coefficients for the 3-particle contribution , using a
polynomial time algorithm. We give the Fuchsian differential equation of order
seven for that reproduces all the terms of our long series. An
analysis of the properties of this Fuchsian differential equation is performed.Comment: 15 pages, no figures, submitted to J. Phys.
Embedding of random vectors into continuous martingales
Let E be a real, separable Banach space and denote by the space of all E-valued random vectors defined on the probability space Ω. The following result is proved. There exists an extension of Ω, and a filtration on , such that for every there is an E-valued, continuous -martingale in which X is embedded in the sense that a.s. for an a.s. finite stopping time Ï. For E = â this gives a Skorokhod embedding for all , and for general E this leads to a representation of random vectors as stochastic integrals relative to a Brownian motion
- âŠ