159 research outputs found

    Peeping at chaos: Nondestructive monitoring of chaotic systems by measuring long-time escape rates

    Full text link
    One or more small holes provide non-destructive windows to observe corresponding closed systems, for example by measuring long time escape rates of particles as a function of hole sizes and positions. To leading order the escape rate of chaotic systems is proportional to the hole size and independent of position. Here we give exact formulas for the subsequent terms, as sums of correlation functions; these depend on hole size and position, hence yield information on the closed system dynamics. Conversely, the theory can be readily applied to experimental design, for example to control escape rates.Comment: Originally 4 pages and 2 eps figures incorporated into the text; v2 has more numerical results and discussion: now 6 pages, 4 figure

    Master equation approach to the conjugate pairing rule of Lyapunov spectra for many-particle thermostatted systems

    Full text link
    The master equation approach to Lyapunov spectra for many-particle systems is applied to non-equilibrium thermostatted systems to discuss the conjugate pairing rule. We consider iso-kinetic thermostatted systems with a shear flow sustained by an external restriction, in which particle interactions are expressed as a Gaussian white randomness. Positive Lyapunov exponents are calculated by using the Fokker-Planck equation to describe the tangent vector dynamics. We introduce another Fokker-Planck equation to describe the time-reversed tangent vector dynamics, which allows us to calculate the negative Lyapunov exponents. Using the Lyapunov exponents provided by these two Fokker-Planck equations we show the conjugate pairing rule is satisfied for thermostatted systems with a shear flow in the thermodynamic limit. We also give an explicit form to connect the Lyapunov exponents with the time-correlation of the interaction matrix in a thermostatted system with a color field.Comment: 10 page

    Spectral statistics of random geometric graphs

    Get PDF
    We use random matrix theory to study the spectrum of random geometric graphs, a fundamental model of spatial networks. Considering ensembles of random geometric graphs we look at short range correlations in the level spacings of the spectrum via the nearest neighbour and next nearest neighbour spacing distribution and long range correlations via the spectral rigidity Delta_3 statistic. These correlations in the level spacings give information about localisation of eigenvectors, level of community structure and the level of randomness within the networks. We find a parameter dependent transition between Poisson and Gaussian orthogonal ensemble statistics. That is the spectral statistics of spatial random geometric graphs fits the universality of random matrix theory found in other models such as Erdos-Renyi, Barabasi-Albert and Watts-Strogatz random graph.Comment: 19 pages, 6 figures. Substantially updated from previous versio

    Chaos in the Einstein-Yang-Mills Equations

    Full text link
    Yang-Mills color fields evolve chaotically in an anisotropically expanding universe. The chaotic behaviour differs from that found in anisotropic Mixmaster universes. The universe isotropizes at late times, approaching the mean expansion rate of a radiation-dominated universe. However, small chaotic oscillations of the shear and color stresses continue indefinitely. An invariant, coordinate-independent characterisation of the chaos is provided by means of fractal basin boundaries.Comment: 3 pages LaTeX + 3 pages of figure

    Open Mushrooms: Stickiness revisited

    Full text link
    We investigate mushroom billiards, a class of dynamical systems with sharply divided phase space. For typical values of the control parameter of the system ρ\rho, an infinite number of marginally unstable periodic orbits (MUPOs) exist making the system sticky in the sense that unstable orbits approach regular regions in phase space and thus exhibit regular behaviour for long periods of time. The problem of finding these MUPOs is expressed as the well known problem of finding optimal rational approximations of a real number, subject to some system-specific constraints. By introducing a generalized mushroom and using properties of continued fractions, we describe a zero measure set of control parameter values ρ(0,1)\rho\in(0,1) for which all MUPOs are destroyed and therefore the system is less sticky. The open mushroom (billiard with a hole) is then considered in order to quantify the stickiness exhibited and exact leading order expressions for the algebraic decay of the survival probability function P(t)P(t) are calculated for mushrooms with triangular and rectangular stems.Comment: 21 pages, 11 figures. Includes discussion of a three-dimensional mushroo

    Cold Plasma Dispersion Relations in the Vicinity of a Schwarzschild Black Hole Horizon

    Full text link
    We apply the ADM 3+1 formalism to derive the general relativistic magnetohydrodynamic equations for cold plasma in spatially flat Schwarzschild metric. Respective perturbed equations are linearized for non-magnetized and magnetized plasmas both in non-rotating and rotating backgrounds. These are then Fourier analyzed and the corresponding dispersion relations are obtained. These relations are discussed for the existence of waves with positive angular frequency in the region near the horizon. Our results support the fact that no information can be extracted from the Schwarzschild black hole. It is concluded that negative phase velocity propagates in the rotating background whether the black hole is rotating or non-rotating.Comment: 27 pages, 11 figures accepted for publication in Gen. Relat. & Gravi

    Cold Plasma Wave Analysis in Magneto-Rotational Fluids

    Full text link
    This paper is devoted to investigate the cold plasma wave properties. The analysis has been restricted to the neighborhood of the pair production region of the Kerr magnetosphere. The Fourier analyzed general relativistic magnetohydrodynamical equations are dealt under special circumstances and dispersion relations are obtained. We find the xx-component of the complex wave vector numerically. The corresponding components of the propagation vector, attenuation vector, phase and group velocities are shown in graphs. The direction and dispersion of waves are investigated.Comment: 22 pages, 18 figures, accepted for publication in Astrophys. Space Sc

    The mixmaster universe: A chaotic Farey tale

    Full text link
    When gravitational fields are at their strongest, the evolution of spacetime is thought to be highly erratic. Over the past decade debate has raged over whether this evolution can be classified as chaotic. The debate has centered on the homogeneous but anisotropic mixmaster universe. A definite resolution has been lacking as the techniques used to study the mixmaster dynamics yield observer dependent answers. Here we resolve the conflict by using observer independent, fractal methods. We prove the mixmaster universe is chaotic by exposing the fractal strange repellor that characterizes the dynamics. The repellor is laid bare in both the 6-dimensional minisuperspace of the full Einstein equations, and in a 2-dimensional discretisation of the dynamics. The chaos is encoded in a special set of numbers that form the irrational Farey tree. We quantify the chaos by calculating the strange repellor's Lyapunov dimension, topological entropy and multifractal dimensions. As all of these quantities are coordinate, or gauge independent, there is no longer any ambiguity--the mixmaster universe is indeed chaotic.Comment: 45 pages, RevTeX, 19 Figures included, submitted to PR

    Primordial magnetic fields from inflation?

    Get PDF
    The hot plasma above the electroweak scale contains (hyper) charged scalar particles which are coupled to Abelian gauge fields. Scalars may interact with gravity in a non-conformally invariant way and thus their fluctuations can be amplified during inflation. These fluctuations lead to creation of electric currents and produce inhomogeneous distribution of charge density, resulting in the generation of cosmological magnetic fields. We address the question whether these fields can be coherent at large scales so that they may seed the galactic magnetic fields. Depending upon the mass of the charged scalar and upon various cosmological (critical fraction of energy density in matter, Hubble constant) and particle physics parameters we found that the magnetic fields generated in this way are much larger than vacuum fluctuations. However, their amplitude on cosmological distances is found to be too small for seeding the galactic magnetic fields.Comment: 32 pages in RevTex styl
    corecore