2,042 research outputs found

    Optimal designs for multivariable spline models

    Get PDF
    In this paper, we investigate optimal designs for multivariate additive spline regressionmodels. We assume that the knot locations are unknown, so must be estimated from thedata. In this situation, the Fisher information for the full parameter vector depends on theunknown knot locations, resulting in a non-linear design problem. We show that locally,Bayesian and maximin D-optimal designs can be found as the products of the optimaldesigns in one dimension. A similar result is proven for Q-optimality in the class of allproduct design

    Solution of a Generalized Stieltjes Problem

    Get PDF
    We present the exact solution for a set of nonlinear algebraic equations 1zl=πd+2dnml1zlzm\frac{1}{z_l}= \pi d + \frac{2 d}{n} \sum_{m \neq l} \frac{1}{z_l-z_m}. These were encountered by us in a recent study of the low energy spectrum of the Heisenberg ferromagnetic chain \cite{dhar}. These equations are low dd (density) ``degenerations'' of more complicated transcendental equation of Bethe's Ansatz for a ferromagnet, but are interesting in themselves. They generalize, through a single parameter, the equations of Stieltjes, xl=ml1/(xlxm)x_l = \sum_{m \neq l} 1/(x_l-x_m), familiar from Random Matrix theory. It is shown that the solutions of these set of equations is given by the zeros of generalized associated Laguerre polynomials. These zeros are interesting, since they provide one of the few known cases where the location is along a nontrivial curve in the complex plane that is determined in this work. Using a ``Green's function'' and a saddle point technique we determine the asymptotic distribution of zeros.Comment: 19 pages, 4 figure

    Anisotropic Radial Layout for Visualizing Centrality and Structure in Graphs

    Full text link
    This paper presents a novel method for layout of undirected graphs, where nodes (vertices) are constrained to lie on a set of nested, simple, closed curves. Such a layout is useful to simultaneously display the structural centrality and vertex distance information for graphs in many domains, including social networks. Closed curves are a more general constraint than the previously proposed circles, and afford our method more flexibility to preserve vertex relationships compared to existing radial layout methods. The proposed approach modifies the multidimensional scaling (MDS) stress to include the estimation of a vertex depth or centrality field as well as a term that penalizes discord between structural centrality of vertices and their alignment with this carefully estimated field. We also propose a visualization strategy for the proposed layout and demonstrate its effectiveness using three social network datasets.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    The discretised harmonic oscillator: Mathieu functions and a new class of generalised Hermite polynomials

    Full text link
    We present a general, asymptotical solution for the discretised harmonic oscillator. The corresponding Schr\"odinger equation is canonically conjugate to the Mathieu differential equation, the Schr\"odinger equation of the quantum pendulum. Thus, in addition to giving an explicit solution for the Hamiltonian of an isolated Josephon junction or a superconducting single-electron transistor (SSET), we obtain an asymptotical representation of Mathieu functions. We solve the discretised harmonic oscillator by transforming the infinite-dimensional matrix-eigenvalue problem into an infinite set of algebraic equations which are later shown to be satisfied by the obtained solution. The proposed ansatz defines a new class of generalised Hermite polynomials which are explicit functions of the coupling parameter and tend to ordinary Hermite polynomials in the limit of vanishing coupling constant. The polynomials become orthogonal as parts of the eigenvectors of a Hermitian matrix and, consequently, the exponential part of the solution can not be excluded. We have conjectured the general structure of the solution, both with respect to the quantum number and the order of the expansion. An explicit proof is given for the three leading orders of the asymptotical solution and we sketch a proof for the asymptotical convergence of eigenvectors with respect to norm. From a more practical point of view, we can estimate the required effort for improving the known solution and the accuracy of the eigenvectors. The applied method can be generalised in order to accommodate several variables.Comment: 18 pages, ReVTeX, the final version with rather general expression

    Risk estimators for choosing regularization parameters in ill-posed problems - Properties and limitations

    Get PDF
    This paper discusses the properties of certain risk estimators that recently regained popularity for choosing regularization parameters in ill-posed problems, in particular for sparsity regularization. They apply Stein’s unbiased risk estimator (SURE) to estimate the risk in either the space of the unknown variables or in the data space. We will call the latter PSURE in order to distinguish the two different risk functions. It seems intuitive that SURE is more appropriate for ill-posed problems, since the properties in the data space do not tell much about the quality of the reconstruction. We provide theoretical studies of both approaches for linear Tikhonov regularization in a finite dimensional setting and estimate the quality of the risk estimators, which also leads to asymptotic convergence results as the dimension of the problem tends to infinity. Unlike previous works which studied single realizations of image processing problems with a very low degree of ill-posedness, we are interested in the statistical behaviour of the risk estimators for increasing ill-posedness. Interestingly, our theoretical results indicate that the quality of the SURE risk can deteriorate asymptotically for ill-posed problems, which is confirmed by an extensive numerical study. The latter shows that in many cases the SURE estimator leads to extremely small regularization parameters, which obviously cannot stabilize the reconstruction. Similar but less severe issues with respect to robustness also appear for the PSURE estimator, which in comparison to the rather conservative discrepancy principle leads to the conclusion that regularization parameter choice based on unbiased risk estimation is not a reliable procedure for ill-posed problems. A similar numerical study for sparsity regularization demonstrates that the same issue appears in non-linear variational regularization approaches

    Strong asymptotics for Jacobi polynomials with varying nonstandard parameters

    Get PDF
    Strong asymptotics on the whole complex plane of a sequence of monic Jacobi polynomials Pn(αn,βn)P_n^{(\alpha_n, \beta_n)} is studied, assuming that limnαnn=A,limnβnn=B, \lim_{n\to\infty} \frac{\alpha_n}{n}=A, \qquad \lim_{n\to\infty} \frac{\beta _n}{n}=B, with AA and BB satisfying A>1 A > -1, B>1 B>-1, A+B<1A+B < -1. The asymptotic analysis is based on the non-Hermitian orthogonality of these polynomials, and uses the Deift/Zhou steepest descent analysis for matrix Riemann-Hilbert problems. As a corollary, asymptotic zero behavior is derived. We show that in a generic case the zeros distribute on the set of critical trajectories Γ\Gamma of a certain quadratic differential according to the equilibrium measure on Γ\Gamma in an external field. However, when either αn\alpha_n, βn\beta_n or αn+βn\alpha_n+\beta_n are geometrically close to Z\Z, part of the zeros accumulate along a different trajectory of the same quadratic differential.Comment: 31 pages, 12 figures. Some references added. To appear in Journal D'Analyse Mathematiqu

    The quest for companions to post-common envelope binaries: I. Searching a sample of stars from the CSS and SDSS

    Full text link
    As part of an ongoing collaboration between student groups at high schools and professional astronomers, we have searched for the presence of circum-binary planets in a bona-fide unbiased sample of twelve post-common envelope binaries (PCEBs) from the Catalina Sky Survey (CSS) and the Sloan Digital Sky Survey (SDSS). Although the present ephemerides are significantly more accurate than previous ones, we find no clear evidence for orbital period variations between 2005 and 2011 or during the 2011 observing season. The sparse long-term coverage still permits O-C variations with a period of years and an amplitude of tens of seconds, as found in other systems. Our observations provide the basis for future inferences about the frequency with which planet-sized or brown-dwarf companions have either formed in these evolved systems or survived the common envelope (CE) phase.Comment: accepted by A&

    A Semi-Infinite Programming based algorithm for determining T-optimum designs for model discrimination

    Full text link
    T-optimum designs for model discrimination are notoriously difficult to find because of the computational difficulty involved in solving an optimization problem that involves two layers of optimization. Only a handful of analytical T-optimal designs are available for the simplest problems; the rest in the literature are found using specialized numerical procedures for a specific problem. We propose a potentially more systematic and general way for finding T-optimal designs using a Semi-Infinite Programming (SIP) approach. The strategy requires that we first reformulate the original minimax or maximin optimization problem into an equivalent semi-infinite program and solve it using an exchange-based method where lower and upper bounds produced by solving the outer and the inner programs, are iterated to convergence. A global Nonlinear Programming (NLP) solver is used to handle the subproblems, thus finding the optimal design and the least favorable parametric configuration that minimizes the residual sum of squares from the alternative or test models. We also use a nonlinear program to check the global optimality of the SIP-generated design and automate the construction of globally optimal designs. The algorithm is successfully used to produce results that coincide with several T-optimal designs reported in the literature for various types of model discrimination problems with normally distributed errors. However, our method is more general, merely requiring that the parameters of the model be estimated by a numerical optimization

    Modification of TiO2 and ZnO Particles Under Mechanical Stress with Polypropylene

    Get PDF
    Solid-state process of introducing oxygen vacancies into the structure of TiO2 and ZnO particles was studied. The phase transformations of metal oxides throughout the process were examined by X-ray diffraction (XRD). The influence of the loaded mechanical stress on the band gap was studied by diffuse reflectance spectroscopy (DRS). Mechanism of elimination of oxygen atoms from the surface of the oxides by co-milling with polyolefins, which can lead to creation of more effective materials for waste water treatment, was proposed.This is the peer-reviewed version of the paper: Skurikhina, O., Tothova, E., Markovic, S., Senna, M., 2020. Modification of TiO2 and ZnO Particles Under Mechanical Stress with Polypropylene, in: Petkov, P., Achour, M.E., Popov, C. (Eds.), Nanoscience and Nanotechnology in Security and Protection against CBRN Threats, NATO Science for Peace and Security Series B: Physics and Biophysics. Springer Netherlands, Dordrecht, pp. 209–213. [https://doi.org/10.1007/978-94-024-2018-0_16
    corecore