28 research outputs found

    Anisotropic electron g-factor in quantum dots with spin-orbit interaction

    Full text link
    g-factor tuning of electrons in quantum dots is studied as function of in-plane and perpendicular magnetic fields for different confinements. Rashba and Dresselhaus effects are considered, and comparison is made between wide- and narrow-gap materials. The interplay between magnetic fields and intrinsic spin-orbit coupling is analyzed, with two distinct phases found in the spectrum for GaAs in perpendicular field. The anisotropy of the g-factor is reported, and good agreement with available experimental findings is obtained.Comment: 5 pages, 4 figs. (higher resol. figs. under request

    Transport properties of nano-devices: One-dimensional model study

    Full text link
    A 1D model study of charge transport in nano-devices is made by comparing multi-configuration time dependent Hartree-Fock and frozen core calculations. The influence of exchange and Coulomb correlation on the tunneling current is determined. We identify the shape of the tunneling barrier and the resonance structure of the nano-device as the two dominant parameters determining the electron transport. Whereas the barrier shape determines the size of the tunneling current, the resonances determine the structure of the current.Comment: 4 page

    The violation of the Hund's rule in semiconductor artificial atoms

    Full text link
    The unrestricted Pople-Nesbet approach for real atoms is adapted to quantum dots, the man-made artificial atoms, under applied magnetic field. Gaussian basis sets are used instead of the exact single-particle orbitals in the construction of the appropriated Slater determinants. Both system chemical potential and charging energy are calculated, as also the expected values for total and z-component in spin states. We have verified the validity of the energy shell structure as well as the Hund's rule state population at zero magnetic field. Above given fields, we have observed a violation of the Hund's rule by the suppression of triplets and quartets states at the 1p energy shell, taken as an example. We also compare our present results with those obtained using the LS-coupling scheme for low electronic occupations. We have focused our attention to ground-state properties for GaAs quantum dots populated up to forty electrons.Comment: 5 pages, 2 figures, submitted to Semic. Sci. Techno

    Spin-orbit coupling and intrinsic spin mixing in quantum dots

    Full text link
    Spin-orbit coupling effects are studied in quantum dots in InSb, a narrow-gap material. Competition between different Rashba and Dresselhaus terms is shown to produce wholesale changes in the spectrum. The large (and negative) gg-factor and the Rashba field produce states where spin is no longer a good quantum number and intrinsic flips occur at moderate magnetic fields. For dots with two electrons, a singlet-triplet mixing occurs in the ground state, with observable signatures in intraband FIR absorption, and possible importance in quantum computation.Comment: REVTEX4 text with 3 figures (high resolution figs available by request). Submitted to PR

    Oscillatory spin relaxation rates in quantum dots

    No full text
    corecore