260 research outputs found

    THE STUDY OF RELATEDNESS AND GENETIC DIVERSITY IN CRANES

    Get PDF
    The U.S. Fish and Wildlife Service (Service) is responsible for recovery of endangered species in the wild and, when necessary, maintenance in captivity. These programs provide an immediate measure of insurance against extinction. A prerequisite inherent in all of these programs is the preservation of enough genetic diversity to maintain a viable population and to maintain the capacity of the population to respond to change. Measures of genetic diversity examine polymorphic genes that are not influenced by selection pressures. Examples of these techniques and those used to determine relatedness are discussed. Studies of genetic diversity, electrophoresis of blood proteins, relatedness, blood typing, and restriction fragment length polymorphisms which are being used by the Patuxent Wildlife Research Center are discussed in detail

    Aspidoscelis laredoensis and A. gularis hybridization.

    Get PDF
    13 pages : illustrations (some color) ; 26 cm.Karyotypes and allozyme data for 32 genetic loci overwhelmingly support the conclusion that Aspidoscelis laredoensis is a diploid all-female species that had a hybrid origin between A. gularis x A. sexlineatus. Comparisons of allozymes in individuals representing three mother-to-daughter generations raised in the laboratory suggest that they reproduce by parthenogenetic cloning. In addition to two previously described morphotypes (pattern classes A and B) that occur in southern Texas, we report the existence of three all-female clonal lineages based on allozymes. Individuals of at least one of these lineages occasionally hybridize in nature with males of A. gularis, producing viable and healthy triploid offspring that can grow to adulthood, one of which herself produced an offspring in the laboratory and could have represented a new, clonal triploid species. The possibility exists that cloned offspring of triploid hybrids are present in South Texas and/or northern Mexico, awaiting discovery. These would represent a new species that would appear to be very similar to A. laredoensis

    Protein Kinase A Binds and Activates Heat Shock Factor 1

    Get PDF
    BACKGROUND. Many inducible transcription factors are regulated through batteries of posttranslational modifications that couple their activity to inducing stimuli. We have studied such regulation of Heat Shock Factor 1 (HSF1), a key protein in control of the heat shock response, and a participant in carcinogenisis, neurological health and aging. As the mechanisms involved in the intracellular regulation of HSF1 in good health and its dysregulation in disease are still incomplete we are investigating the role of posttranslational modifications in such regulation. METHODOLOGY/PRINCIPAL FINDINGS. In a proteomic study of HSF1 binding partners, we have discovered its association with the pleiotropic protein kinase A (PKA). HSF1 binds avidly to the catalytic subunit of PKA, (PKAca) and becomes phosphorylated on a novel serine phosphorylation site within its central regulatory domain (serine 320 or S320), both in vitro and in vivo. Intracellular PKAca levels and phosphorylation of HSF1 at S320 were both required for HSF1 to be localized to the nucleus, bind to response elements in the promoter of an HSF1 target gene (hsp70.1) and activate hsp70.1 after stress. Reduction in PKAca levels by small hairpin RNA led to HSF1 exclusion from the nucleus, its exodus from the hsp70.1 promoter and decreased hsp70.1 transcription. Likewise, null mutation of HSF1 at S320 by alanine substitution for serine led to an HSF1 species excluded from the nucleus and deficient in hsp70.1 activation. CONCLUSIONS. These findings of PKA regulation of HSF1 through S320 phosphorylation add to our knowledge of the signaling networks converging on this factor and may contribute to elucidating its complex roles in the stress response and understanding HSF1 dysregulation in disease.National Institutes of Health (2RO1CA047407, RO1CA077465

    PKA regulatory subunits mediate synergy among conserved G-protein-coupled receptor cascades

    Get PDF
    G-protein-coupled receptors sense extracellular chemical or physical stimuli and transmit these signals to distinct trimeric G-proteins. Activated GΞ±-proteins route signals to interconnected effector cascades, thus regulating thresholds, amplitudes and durations of signalling. GΞ±s- or GΞ±i-coupled receptor cascades are mechanistically conserved and mediate many sensory processes, including synaptic transmission, cell proliferation and chemotaxis. Here we show that a central, conserved component of GΞ±s-coupled receptor cascades, the regulatory subunit type-II (RII) of protein kinase A undergoes adenosine 3β€²-5β€²-cyclic monophosphate (cAMP)-dependent binding to GΞ±i. Stimulation of a mammalian GΞ±i-coupled receptor and concomitant cAMP-RII binding to GΞ±i, augments the sensitivity, amplitude and duration of GΞ±i:Ξ²Ξ³ activity and downstream mitogen-activated protein kinase signalling, independent of protein kinase A kinase activity. The mechanism is conserved in budding yeast, causing nutrient-dependent modulation of a pheromone response. These findings suggest a direct mechanism by which coincident activation of GΞ±s-coupled receptors controls the precision of adaptive responses of activated GΞ±i-coupled receptor cascades

    Quantitative Modeling of GRK-Mediated Ξ²2AR Regulation

    Get PDF
    We developed a unified model of the GRK-mediated Ξ²2 adrenergic receptor (Ξ²2AR) regulation that simultaneously accounts for six different biochemical measurements of the system obtained over a wide range of agonist concentrations. Using a single deterministic model we accounted for (1) GRK phosphorylation in response to various full and partial agonists; (2) dephosphorylation of the GRK site on the Ξ²2AR; (3) Ξ²2AR internalization; (4) recycling of the Ξ²2AR post isoproterenol treatment; (5) Ξ²2AR desensitization; and (6) Ξ²2AR resensitization. Simulations of our model show that plasma membrane dephosphorylation and recycling of the phosphorylated receptor are necessary to adequately account for the measured dephosphorylation kinetics. We further used the model to predict the consequences of (1) modifying rates such as GRK phosphorylation of the receptor, arrestin binding and dissociation from the receptor, and receptor dephosphorylation that should reflect effects of knockdowns and overexpressions of these components; and (2) varying concentration and frequency of agonist stimulation β€œseen” by the Ξ²2AR to better mimic hormonal, neurophysiological and pharmacological stimulations of the Ξ²2AR. Exploring the consequences of rapid pulsatile agonist stimulation, we found that although resensitization was rapid, the Ξ²2AR system retained the memory of the previous stimuli and desensitized faster and much more strongly in response to subsequent stimuli. The latent memory that we predict is due to slower membrane dephosphorylation, which allows for progressive accumulation of phosphorylated receptor on the surface. This primes the receptor for faster arrestin binding on subsequent agonist activation leading to a greater extent of desensitization. In summary, the model is unique in accounting for the behavior of the Ξ²2AR system across multiple types of biochemical measurements using a single set of experimentally constrained parameters. It also provides insight into how the signaling machinery can retain memory of prior stimulation long after near complete resensitization has been achieved

    Colocalization of Protein Kinase A with Adenylyl Cyclase Enhances Protein Kinase A Activity during Induction of Long-Lasting Long-Term-Potentiation

    Get PDF
    The ability of neurons to differentially respond to specific temporal and spatial input patterns underlies information storage in neural circuits. One means of achieving spatial specificity is to restrict signaling molecules to particular subcellular compartments using anchoring molecules such as A-Kinase Anchoring Proteins (AKAPs). Disruption of protein kinase A (PKA) anchoring to AKAPs impairs a PKA-dependent form of long term potentiation (LTP) in the hippocampus. To investigate the role of localized PKA signaling in LTP, we developed a stochastic reaction-diffusion model of the signaling pathways leading to PKA activation in CA1 pyramidal neurons. Simulations investigated whether the role of anchoring is to locate kinases near molecules that activate them, or near their target molecules. The results show that anchoring PKA with adenylyl cyclase (which produces cAMP that activates PKA) produces significantly greater PKA activity, and phosphorylation of both inhibitor-1 and AMPA receptor GluR1 subunit on S845, than when PKA is anchored apart from adenylyl cyclase. The spatial microdomain of cAMP was smaller than that of PKA suggesting that anchoring PKA near its source of cAMP is critical because inactivation by phosphodiesterase limits diffusion of cAMP. The prediction that the role of anchoring is to colocalize PKA near adenylyl cyclase was confirmed by experimentally rescuing the deficit in LTP produced by disruption of PKA anchoring using phosphodiesterase inhibitors. Additional experiments confirm the model prediction that disruption of anchoring impairs S845 phosphorylation produced by forskolin-induced synaptic potentiation. Collectively, these results show that locating PKA near adenylyl cyclase is a critical function of anchoring
    • …
    corecore