449 research outputs found

    Aluminophosphate molecular sieves comprised of hydrated triple crankshaft chains

    Get PDF
    We report the first synthesis of pure aluminophosphate hydrate H2 (AlPO4-H2) and its structure; AlPO4-H2 is constructed exclusively from a hydrated chain building unit that also builds the 18-ring VPI-5 structure and has one-dimensional channels circumscribed by highly elliptical rings consisting often oxygen atoms, implications from the existence of this building unit for the synthesis of novel aluminophosphate molecular sieves and for the synthesis of aluminosilicate and silicate analogues of AlPO4-H2 and VPI-5 are discussed

    Electronic structure of Pr0.67_{0.67}Ca0.33_{0.33}MnO3_3 near the Fermi level studied by ultraviolet photoelectron and x-ray absorption spectroscopy

    Full text link
    We have investigated the temperature-dependent changes in the near-EEF_F occupied and unoccupied states of Pr0.67_{0.67}Ca0.33_{0.33}MnO3_3 which shows the presence of ferromagnetic and antiferromagnetic phases. The temperature-dependent changes in the charge and orbital degrees of freedom and associated changes in the Mn 3dd - O 2pp hybridization result in varied O 2pp contributions to the valence band. A quantitative estimate of the charge transfer energy (EECT_{CT}) shows a larger value compared to the earlier reported estimates. The charge localization causing the large EECT_{CT} is discussed in terms of different models including the electronic phase separation.Comment: 19 pages, 7 figures, To be published in Phy. Rev.

    Pseudogap Formation in Models for Manganites

    Full text link
    The density-of-states (DOS) and one-particle spectral function A(k,ω)\rm A({\bf k}, \omega) of the one- and two-orbital models for manganites, the latter with Jahn-Teller phonons, are evaluated using Monte Carlo techniques. Unexpectedly robust pseudogap (PG) features were found at low- and intermediate-temperatures, particularly at or near regimes where phase-separation occurs as T\rm T→\to0. The PG follows the chemical potential and it is caused by the formation of ferromagnetic metallic clusters in an insulating background. It is argued that PG formation should be generic of mixed-phase regimes. The results are in good agreement with recent photoemission experiments for La1.2Sr1.8Mn2O7\rm La_{1.2} Sr_{1.8} Mn_2 O_7.Comment: Accepted for publication in Phys. Rev. Lett., 4 pages, Revtex, with 4 figures embedde

    Competition between spin exchange and correlated hopping

    Full text link
    The ground-state phase diagram is numerically studied for an electronic model consisting of the spin exchange term (J) and the correlated hopping term (t_3: the three-site term). This model has no single-particle hopping and the ratio of the two terms is controlled by a parameter \alpha \equiv 4 t_3 / J. The case of \alpha=1 corresponds to complete suppression of single-particle hopping in the strong-coupling limit of the Hubbard model. In one dimension, phase separation takes place below a critical value \alpha_c = 0.36-0.63 which depends on the electron density. Spin gap opens in the whole region except the phase-separated one. For \alpha \gsim 1.2 and low hole densities, charge-density-wave correlations are the most dominant, whereas singlet-pairing correlations are the most dominant in the remaining region. The possibility of superconductivity in the two-dimensional case is also discussed, based on equal-time pairing correlations.Comment: 4 pages including 5 figures. Proceedings of ISSP-Kashiwa 2001 (submitted to J. Phys. Chem. Solids

    Theory for the Interdependence of High-Tc_c Superconductivity and Dynamical Spin Fluctuations

    Full text link
    The doping dependence of the superconducting state for the 2D one-band Hubbard Hamiltonian is determined. By using an Eliashberg-type theory, we find that the gap function Δk\Delta_{\bf k} has a dx2−y2d_{x^2-y^2} symmetry in momentum space and Tc_c becomes maximal for 13  %13 \; \% doping. Since we determine the dynamical excitations directly from real frequency axis calculations, we obtain new structures in the angular resolved density of states related to the occurrence of {\it shadow states} below Tc_c. Explaining the anomalous behavior of photoemission and tunneling experiments in the cuprates, we find a strong interplay between dd-wave superconductivity and dynamical spin fluctuations.Comment: 4 pages (REVTeX) with 4 figures (Postscript

    Collective Modes and the Superconducting State Spectral Function of Bi2212

    Full text link
    Photoemission spectra of the high temperature superconductor Bi2212 near (pi,0) show a dramatic change when cooling below Tc: the broad peak in the normal state turns into a sharp low energy peak followed by a higher binding energy hump. Recent experiments find that this low energy peak persists over a significant range in momentum space. We show in this paper that these data are well described by a simple model of electrons interacting with a collective mode which appears only below Tc.Comment: 4 pages, revtex, 4 encapsulated postscript figure
    • …
    corecore