19 research outputs found

    LES PROTEINES KIN17, XPC, DNA-PKCS ET XRCC4 DANS LA REPONSE CELLULAIRE AUX DOMMAGES DE L'ADN. ETUDE DES RELATIONS ENTRE LA REPARATION PAR EXCISION DE NUCLEOTIDES ET LA RECOMBINAISON NON HOMOLOGUE DANS UN MODELE SYNGENIQUE HUMAIN

    Get PDF
    The response to genotoxic stress involves many cellular factors in a complex network of mechanisms that aim to preserve the genetic integrity of the organism. These mechanisms enclose the detection and repair of DNA lesions, the regulation of transcription and replication and, eventually, the setting of cell death. Among the nuclear proteins involved in this response, kin17 proteins are zinc-finger proteins conserved through evolution and activated by ultraviolet (UV) or ionizing radiations (IR). We showed that human kin17 protein (HSAkin17) is found in the cell under a soluble form and a form tightly anchored to nuclear structures. A fraction of HSAkin17 protein is directly associated with chromatin. HSAkin17 protein is recruited to nuclear structures 24 hours after treatment with various agents inducing DNA double-strand breaks (DSB) and/or replication forks blocage. Moreover, the reduction of total HSAkin17 protein level sensitizises RKO cells to IR. We also present evidence for the involvement of HSAkin17 protein in DNA replication. This hypothesis was further confirmed by the biochemical demonstration of its belonging to the replication complex. HSAkin17 protein could link DNA replication and DNA repair, a defect in the HSAkin17 pathway leading to an increased radiosensitivity. In a second part, we studied the interactions between two DNA repair mechanisms: nucleotide excision repair (NER) and non-homologous end joining (NHEJ). NER repairs a wide variety of lesions inducing a distortion of the DNA double helix including UV-induced pyrimidine dimers. NHEJ allows the repair of DSB by direct joining of DNA ends. We used a syngenic model for DNA repair defects based on RNA interference developed in the laboratory. Epstein-Barr virus-derived vectors (pEBV) allow long-term expression of siRNA and specific exctinction of the targeted gene. The reduction of the expression of genes involved in NER (XPA and XPC) or NHEJ (DNA-PKcs and XRCC4) leads to the expected phenotypes. We showed that a reduced level of XPC protein sensitizes HeLa cells to etoposide, a topoisomerase II inhibitor that induced DSB, and affects their in vitro NHEJ activity. These results suggest that XPC protein could be required for the repair of certain types of breaks or could participate in a global regulation mechanism of the cellular response to DNA lesions. Our model offers interesting opportunities for studying the relations between the different DNA repair pathways in human cells.La rĂ©ponse au stress gĂ©notoxique met en jeu de nombreux facteurs cellulaires impliquĂ©s dans un rĂ©seau complexe de mĂ©canismes visant Ă  assurer le maintien de l'intĂ©gritĂ© gĂ©nĂ©tique de l'organisme. Ces mĂ©canismes incluent la dĂ©tection et la rĂ©paration des lĂ©sions de l'ADN, la rĂ©gulation de la transcription et de la rĂ©plication et le dĂ©clenchement Ă©ventuel de la mort cellulaire. Parmi les protĂ©ines nuclĂ©aires participant Ă  cette rĂ©ponse, les protĂ©ines kin17 sont des protĂ©ines Ă  doigt de zinc conservĂ©es au cours de l'Ă©volution et activĂ©es par les ultraviolets (UV) et les radiations ionisantes (RI). Nous avons montrĂ© que la protĂ©ine kin17 humaine (HSAkin17) est prĂ©sente dans la cellule sous une forme soluble et sous une forme ancrĂ©e aux structures nuclĂ©aires. Une fraction de la protĂ©ine HSAkin17 est directement associĂ©e Ă  la chromatine. La protĂ©ine HSAkin17 est recrutĂ©e sur les structures nuclĂ©aires 24 heures aprĂšs traitement par diffĂ©rents agents induisant des cassures double-brin de l'ADN (DSB) et/ou un blocage des fourches de rĂ©plication. Par ailleurs, la rĂ©duction du niveau total de protĂ©ine HSAkin17 sensibilise les cellules RKO aux RI. Nous prĂ©sentons Ă©galement des rĂ©sultats impliquant la protĂ©ine HSAkin17 dans la rĂ©plication de l'ADN. Cette hypothĂšse a Ă©tĂ© confirmĂ©e par la dĂ©monstration biochimique de son appartenance au complexe de rĂ©plication. La protĂ©ine HSAkin17 pourrait donc assurer le lien entre rĂ©plication et rĂ©paration de l'ADN, un dĂ©faut de la voie HSAkin17 entraĂźnant une augmentation de la radiosensibilitĂ©. Dans un deuxiĂšme temps, nous avons Ă©tudiĂ© les interactions entre deux mĂ©canismes de rĂ©paration de l'ADN : la rĂ©paration par excision de nuclĂ©otides (NER) et la recombinaison non homologue (NHEJ). Le NER prend en charge une grande variĂ©tĂ© de lĂ©sions provoquant une distortion de la double hĂ©lice d'ADN dont les dimĂšres de pyrimidines induits par les UV. Le NHEJ assure la rĂ©paration des DSB par jonction directe des extrĂ©mitĂ©s d'ADN. Nous avons utilisĂ© un modĂšle syngĂ©nique de dĂ©faut de la rĂ©paration basĂ© sur l'interfĂ©rence ARN dĂ©veloppĂ© au laboratoire. En effet, les vecteurs dĂ©rivĂ©s du virus d'Epstein-Barr (pEBV) permettent l'expression Ă  long terme de siRNA et l'extinction spĂ©cifique du gĂšne cible. La rĂ©duction de l'expression de gĂšnes impliquĂ©s dans le NER (XPA et XPC) ou le NHEJ (DNA-PKcs et XRCC4) entraĂźne les phĂ©notypes attendus. Nous avons montrĂ© que la rĂ©duction du niveau de protĂ©ine XPC sensibilise les cellules HeLa Ă  l'Ă©toposide, un inhibiteur de la topoisomĂ©rase II qui induit des DBS, et affecte leur activitĂ© NHEJ in vitro. Ces rĂ©sultats suggĂšrent que la protĂ©ine XPC pourrait ĂȘtre requise pour la rĂ©paration de certains types de cassures ou participer Ă  un systĂšme global de rĂ©gulation de la rĂ©ponse cellulaire aux lĂ©sions de l'ADN. Notre modĂšle ouvre donc des perspectives intĂ©ressantes pour l'Ă©tude des relations entre les diffĂ©rentes voies de rĂ©paration de l'ADN dans des cellules humaines

    Les protéines KIN17, XPC, DNA-PKCS et XRCC4 dans la réponse cellulaire aux dommages de l'ADN. Etude des relations entre la réparation par excision de nucléotides et la recombinaison non homologué dans un modÚle syngénique humain

    Full text link
    Au cours de la vie cellulaire, l ADN, support de l information génétique, est soumis à des atteintes d origine endogÚne ou exogÚne qui entraßnent une grande variété de modifications. Si elles ne sont pas réparées correctement, les lésions de l ADN peuvent causer l apparition de mutations et entraßner instabilité génétique et cancer (pour revue voir Hoeijmakers, 2001).Les liaisons chimiques au sein de la double hélice d ADN peuvent s altérer spontanément : perte du groupement amino-exocyclique (déamination) ou hydrolyse de la liaison des bases au désoxyribose (dépurination ou dépyrimidination). Malgré une fidélité importante, il arrive également que la machinerie de réplication de l ADN commette des erreurs ...PARIS5-BU-Necker : Fermée (751152101) / SudocSudocFranceF

    Replication intermediate architecture reveals the chronology of DNA damage tolerance pathways at UV-stalled replication forks in human cells

    Full text link
    Abstract DNA lesions in S phase threaten genome stability. The DNA damage tolerance (DDT) pathways overcome these obstacles and allow completion of DNA synthesis by the use of specialised translesion (TLS) DNA polymerases or through recombination-related processes. However, how these mechanisms coordinate with each other and with bulk replication remain elusive. To address these issues, we monitored the variation of replication intermediate architecture in response to ultraviolet irradiation using transmission electron microscopy. We show that the TLS polymerase η , able to accurately bypass the major UV lesion and mutated in the skin cancer-prone xeroderma pigmentosum variant (XPV) syndrome, acts at the replication fork to resolve uncoupling and prevent post-replicative gap accumulation. Repriming occurs as a compensatory mechanism when this on-the-fly mechanism cannot operate, and is therefore predominant in XPV cells. Interestingly, our data support a recombination-independent function of RAD51 at the replication fork to sustain repriming. Finally, we provide evidence for the post-replicative commitment of recombination in gap repair and for pioneering observations of in vivo recombination intermediates. Altogether, we propose a chronology of UV damage tolerance in human cells that highlights the key role of pol η in shaping this response and ensuring the continuity of DNA synthesis

    Long-term XPC

    Full text link

    The SLX4 Complex Is a SUMO E3 Ligase that Impacts on Replication Stress Outcome and Genome Stability

    Full text link
    International audienceThe SLX4 Fanconi anemia protein is a tumor suppres- sor that may act as a key regulator that engages the cell into specific genome maintenance pathways. Here, we show that the SLX4 complex is a SUMO E3 ligase that SUMOylates SLX4 itself and the XPF sub- unit of the DNA repair/recombination XPF-ERCC1 endonuclease. This SLX4-dependent activity is medi- ated by a remarkably specific interaction between SLX4 and the SUMO-charged E2 conjugating enzyme UBC9 and relies not only on newly identified SUMO- interacting motifs (SIMs) in SLX4 but also on its BTB domain. In contrast to its ubiquitin-binding UBZ4 motifs, SLX4 SIMs are dispensable for its DNA inter- strand crosslink repair functions. Instead, while detri- mental in response to global replication stress, the SUMO E3 ligase activity of the SLX4 complex is crit- ical to prevent mitotic catastrophe following common fragile site expression

    In vivo inactivation of RAD51-mediated homologous recombination leads to premature aging, but not to tumorigenesis

    Full text link
    Abstract Genetic instability is a hallmark of both cancer and aging. Homologous recombination (HR) is a prominent DNA repair pathway maintaining genomic integrity. Mutations in many HR genes lead to cancer predisposition. Paradoxically, the consequences of mutations in the pivotal HR player, RAD51 , on cancer development remain puzzling. Moreover, in contrast with other HR genes, RAD51 mouse models are not available to experimentally address the role of RAD51 on aging and carcinogenesis, in vivo . Here, we engineered a mouse model with an inducible dominant negative form of RAD51 ( SMRad51 ) that suppresses RAD51-mediated HR without stimulating alternative non-conservative repair pathways. We found that, in vivo expression of SMRad51 did not trigger tumorigenesis, but instead induced premature aging. We propose that these in vivo phenotypes result from the exhaustion of proliferating progenitors submitted to chronic endogenous replication stress resulting from RAD51-mediated HR suppression. Our data underline the importance of the RAD51 activity for progenitors homeostasis, preventing aging, and more generally for the balance between cancer and aging

    In vivo reduction of RAD51 ‐mediated homologous recombination triggers aging but impairs oncogenesis

    Full text link
    Abstract Homologous recombination (HR) is a prominent DNA repair pathway maintaining genome integrity. Mutations in many HR genes lead to cancer predisposition. Paradoxically, the implication of the pivotal HR factor RAD51 on cancer development remains puzzling. Particularly, no RAD51 mouse models are available to address the role of RAD51 in aging and carcinogenesis in vivo . We engineered a mouse model with an inducible dominant‐negative form of RAD51 ( SMRad51 ) that suppresses RAD51‐mediated HR without stimulating alternative mutagenic repair pathways. We found that in vivo expression of SMRad51 led to replicative stress, systemic inflammation, progenitor exhaustion, premature aging and reduced lifespan, but did not trigger tumorigenesis. Expressing SMRAD51 in a breast cancer predisposition mouse model (PyMT) decreased the number and the size of tumors, revealing an anti‐tumor activity of SMRAD51. We propose that these in vivo phenotypes result from chronic endogenous replication stress caused by HR decrease, which preferentially targets progenitors and tumor cells. Our work underlines the importance of RAD51 activity for progenitor cell homeostasis, preventing aging and more generally for the balance between cancer and aging
    corecore