173 research outputs found
Estimate of crossed-boson-exchange contributions to the binding energy of two-body systems
Binding energies calculated from using the Bethe-Salpeter equation in the
simplest ladder approximation significantly differ from those obtained in the
non-relativistic standard instantaneous approximation. While they should a
priori be better, they turn out to be further away from an exact calculation in
the case of scalar neutral particles or from experiment in the case of the
Coulomb interaction. Part of the discrepancy is due to the omission in the
interaction kernel of contributions corresponding to crossed-boson-exchange
diagrams. The role of these contributions is examined numerically, using a
simple approximation. The sensitivity to both the coupling constant and the
mass of the exchanged boson is considered.Comment: 11 pages, 7 figures, file.ta
Parity-violating nucleon-nucleon interaction from different approaches
Two-pion exchange parity-violating nucleon-nucleon interactions from recent
effective field theories and earlier fully covariant approaches are
investigated. The potentials are compared with the idea to obtain better
insight on the role of low-energy constants appearing in the effective field
theory approach and the convergence of this one in terms of a perturbative
series. The results are illustrated by considering the longitudinal asymmetry
of polarized protons scattering off protons, , and the
asymmetry of the photon emission in radiative capture of polarized neutrons by
protons, .Comment: 31 page
Parity Violation in gamma proton Compton Scattering
A measurement of parity-violating spin-dependent gamma proton Compton
scattering will provide a theoretically clean determination of the
parity-violating pion-nucleon coupling constant . We
calculate the leading parity-violating amplitude arising from one-loop pion
graphs in chiral perturbation theory. An asymmetry of ~5 10^{-8} is estimated
for Compton scattering of 100 MeV photons.Comment: 6 pages, 1 figure, latex. Reference adde
Parity violation in deuteron photo-disintegration
We analyze the energy dependence for two types of parity-non-conserving
(PNC) asymmetries in the reaction in the near-threshold
region. The first one is the asymmetry in reaction with circularly polarized
photon beam and unpolarized deuteron target. The second one corresponds to
those with an unpolarized photon beam and polarized target. We find that the
two asymmetries have quite different energy dependence, and their shapes are
sensitive to the PNC-meson exchange coupling constants.
The predictions for the future possible experiments to provide definite
constraints for the PNC-coupling constants are discussed.Comment: 22 pages, 12 figures. Submitted to Phys.Rev.C 10Oct.0
Parity nonconserving cold neutron-parahydrogen interactions
Three pion dominated observables of the parity nonconserving interactions
between the cold neutrons and parahydrogen are calculated. The transversely
polarized neutron spin rotation, unpolarized neutron longitudinal polarization,
and photon-asymmetry of the radiative polarized neutron capture are considered.
For the numerical evaluation of the observables, the strong interactions are
taken into account by the Reid93 potential and the parity nonconserving
interactions by the DDH model along with the two-pion exchange.Comment: 17 pages, 2 figure
A Limited Symmetry Found by Comparing Calculated Magnetic Dipole Spin and Orbital Strengths in ^4\mbox{He}
Allowing for admixtures in ^4\mbox{He} we find that the
summed magnetic dipole isovector orbital and spin strengths are equal. This
indicates a symmetry which is associated with interchanging the labels of the
spin with those of the orbit. Where higher admixtures are included, the orbital
sum becomes larger than the spin sum, but the sums over the low energy region
are still nearly the same.Comment: 13 pages, revtex, 1 ps file appende
Evaluation of the mean intensity of the P-odd mixing of nuclear compound states
A temperature version of the shell-optical-model approach for describing the
low-energy compound-to-compound transitions induced by external single-particle
fields is given. The approach is applied to evaluate the mean intensity of the
P-odd mixing of nuclear compound states. Unified description for the mixing and
electromagnetic transitions allows one to evaluate the mean intensity without
the use of free parameters. The valence-mechanism contribution to the mentioned
intensity is also evaluated. Calculation results are compared with the data
deduced from cross sections of relevant neutron-induced reactions.Comment: LaTeX, 10 page
Parity nonconservation effects in the photodesintegration of polarized deuterons
P-odd correlations in the deuteron photodesintegration are considered. The
-meson exchange is not operative in the case of unpolarized deuterons. For
polarized deuterons a P-odd correlation due to the -meson exchange is
about . Short-distance P-odd contributions exceed essentially
than the contribution of the -meson exchange.Comment: 12 pages, Latex, 3 figure
Factorization Contributions and the Breaking of the Rule in Weak and Couplings
We compute the modified factorization contributions to the
and couplings and
demonstrate that these contributions naturally include terms
which are comparable ( to times) in magnitude to the
corresponding terms. As a consequence, we conclude that models
which treat vector meson exchange contributions to the weak conversion process
assuming such weak couplings to satisfy the rule are unlikely to be reliable.Comment: 13 pages, uses REVTEX Entire manuscript available as a ps file at
http://www.physics.adelaide.edu.au/theory/home.html . Also available via
anonymous ftp at ftp://adelphi.adelaide.edu.au/pub/theory/ADP-95-5.T172.ps To
appear in Physical Review
Parity Violation in Proton-Proton Scattering
Measurements of parity-violating longitudinal analyzing powers (normalized
asymmetries) in polarized proton-proton scattering provide a unique window on
the interplay between the weak and strong interactions between and within
hadrons. Several new proton-proton parity violation experiments are presently
either being performed or are being prepared for execution in the near future:
at TRIUMF at 221 MeV and 450 MeV and at COSY (Kernforschungsanlage Juelich) at
230 MeV and near 1.3 GeV. These experiments are intended to provide stringent
constraints on the set of six effective weak meson-nucleon coupling constants,
which characterize the weak interaction between hadrons in the energy domain
where meson exchange models provide an appropriate description. The 221 MeV is
unique in that it selects a single transition amplitude (3P2-1D2) and
consequently constrains the weak meson-nucleon coupling constant h_rho{pp}. The
TRIUMF 221 MeV proton-proton parity violation experiment is described in some
detail. A preliminary result for the longitudinal analyzing power is Az = (1.1
+/-0.4 +/-0.4) x 10^-7. Further proton-proton parity violation experiments are
commented on. The anomaly at 6 GeV/c requires that a new multi-GeV
proton-proton parity violation experiment be performed.Comment: 13 Pages LaTeX, 5 PostScript figures, uses espcrc1.sty. Invited talk
at QULEN97, International Conference on Quark Lepton Nuclear Physics --
Nonperturbative QCD Hadron Physics & Electroweak Nuclear Processes --, Osaka,
Japan May 20--23, 199
- …