5 research outputs found
Extension modes and breakup processes of the southeast China-Northwest Palawan conjugate rifted margins
International audienc
Polyphase rifting and break-up of the central Mozambique margin
The break-up of the Gondwana supercontinent resulted in the formation of the Central Mozambique passive margin as Africa and Antarctica were separated during the mid-Jurassic period. Although plate kinematics during the oceanic spreading phase are well constrained, the initial fit of Africa and Antarctica, their earliest relative movements and margin architectures remain active areas of interest. This study uses high quality multi-channel seismic reflection profiles to identify the major crustal domains in the Angoche and Beira regions of the Central Mozambique margin. Our results show that the Central Mozambique passive margin is characterised by intense but localised magmatic activity, evidenced by the existence of seaward dipping reflectors (SDRs) in the Angoche region, and magmatic sills and volcanoclastic material marking the Beira High. The Angoche and Beira regions possess faulted upper-continental crusts, with possible exhumation of lower crustal material forming an extended ocean-continent transition (OCT). The Beira High segment reveals an offshore continental fragment, which is overlain by a faulted pre-rift sedimentary unit likely to belong to the Karoo Group. The combination of our seismic interpretation with existing geophysical and geological data has allowed us to propose a break-up model which supports the idea that the Central Mozambique margin was affected by polyphase rifting. The Beira High basement is formed by a strike-slip deformation along a proposed lithospheric weakness - the Lurio-Pebane shear zone. Northwestern-southeastern oriented extension follows and results in continental break-up and oceanic spreading. Our results suggest a segmentation of the Central Mozambique margin with oceanisation first occurring in the Angoche segment. The formation of the first oceanic crust in the Beira segment followed, likely delayed by the formation and failure of the northern Beira High rift
The thermal imprint of continental breakup during the formation of the South China Sea
The stretching of continental lithosphere results in asthenospheric upwelling, raising of isotherms, melting during decompression and eventually seafloor spreading. The thermal maturity of overlying sedimentary organic matter from these settings would be expected to be distinctly altered by these processes, however this is still poorly constrained and quantitatively unexplored. International Ocean Discovery Program (IODP) Expeditions 367â368 cored sediments at the Continent Ocean Transition (COT) on the Northern Margin of the South China Sea (SCS). From two settings at the South East China COT we measured and modelled thermal maturity in pre-/syn- to post-rift sediments making use of a range of thermal maturity parameters. Various heat-flow evolutionary scenarios were investigated, with notable jumps in thermal maturity for sediments corresponding to different depositional packages. In order to match observations of thermal maturity, it was found that the deeper and likely pre-rift sediments were heated to temperatures as high as 200 °C during initial breakup. Achieving this temperature for the deeper sediments requires that significant additional heat be imparted at shallow depths (e.g. exposure to at least the far-field effects of a magmatic intrusion or subsurface expressions of volcanism). The post-rift sediments have lower thermal maturities which are likely due to limited burial and the absence of late post-rift magmatism. The comparison of the SE China COT with other margin examples highlights some parameters controlling the thermal evolution and its record
The Limpopo magmaârich transform margin, South Mozambique â part 2: Implications for the Gondwana breakup
International audienceThe rifted continental margins of Mozambique provide excellent examples of continental passive margins with a significant structural variability associated with magmatism and inheritance. Despite accumulated knowledge, the tectonic structure and nature of the crust beneath the South Mozambique Coastal Plain (SMCP) are still poorly known. This study interprets high-resolution seismic reflection data paired with data from industry-drilled wells and proposes a structural model of the Limpopo transform margin in a magma-rich context. Results indicate that the Limpopo transform margin is characterized by an ocean-continent transition that links the Beira-High and Natal valley margin segments and represents the western limit of the continental crust, separating continental volcano-sedimentary infilled grabens from the oceanic crust domain. These basins result from the emplacement of the Karoo Supergroup during a Permo-Triassic tectonic event, followed by an Early Jurassic tectonic and magmatic event. This latter led to the establishment of steady-state seafloor spreading at ca.156 Ma along the SMCP. A Late Jurassic to Early Cretaceous event corresponds to formation of the Limpopo transform fault zone. Which accommodated the SSE-ward displacement of Antarctica with respect to Africa. We define a new type of margin: the magma-rich transform margin, characterized by the presence of voluminous magmatic extrusion and intrusion coincident with the formation and evolution of the transform margin. The Limpopo transform fault zone consists of several syn-transfer and -transform faults rather than a single transform fault. The intense magmatic activity was associated primarily with mantle dynamics, which controlled the large-scale differential subsidence along the transform margin
The Limpopo Magma-Rich Transform Margin, South Mozambique: 1. Insights From Deep-Structure Seismic Imaging
International audienceA variety of structures results from the interplay of evolving far-field forces, plate kinematics, and magmatic activity during continental break-up. The east Limpopo transform margin, offshore northern Mozambique, formed as Africa and Antarctica separated during the mid-Jurassic period break-up of the Gondwana supercontinent. The nature of the crust onshore has been discussed for decades in an effort to resolve issues with plate kinematic models. Two seismic refraction profiles with coincident multichannel seismic reflection profiles allow us to interpret the seismic velocity structures across the margin, both onshore and offshore. These seismic profiles allow us to (a) delineate the major regional crustal domains; (b) identify widespread indications of magmatic activity; and (c) map crustal structure and geometry of this magma-rich transform margin. Careful examination of the profiles allows us to make the following observations and interpretations: (a) on land, continental crust is overlain by a >10-km thick volcano-sedimentary wedge related to an early rifting stage, (b) offshore, thick oceanic crust formed due to intense magmatic activity, and between the two (c) a 50-60-km wide transform zone where the crustal structures are affected by intense magmatic activity and faulting. The prominent presence of intrusive and extrusive igneous units may be attributed to the combination of a deep-seated melting anomaly and a trans-tensional fault zone running through thinned lithosphere that allowed melt to reach the surface. A comparison of the crustal thinning along other transform margins shows a probable dependence with the thermal and/or tectonic history of the lithosphere