7 research outputs found
Probability Density Function of Longitudinal Velocity Increment in Homogeneous Turbulence
Two conditional averages for the longitudinal velocity increment u_r of the
simulated turbulence are calculated: h(u_r) is the average of the increment of
the longitudinal Laplacian velocity field with u_r fixed, while g(u_r) is the
corresponding one of the square of the difference of the gradient of the
velocity field. Based on the physical argument, we suggest the formulae for h
and g, which are quite satisfactorily fitted to the 512^3 DNS data. The
predicted PDF is characterized as
(1) the Gaussian distribution for the small amplitudes,
(2) the exponential distribution for the large ones, and (3) a prefactor
before the exponential function for the intermediate ones.Comment: 4 pages, 4 figures, using RevTeX3.
Chaotic Cascades with Kolmogorov 1941 Scaling
We define a (chaotic) deterministic variant of random multiplicative cascade
models of turbulence. It preserves the hierarchical tree structure, thanks to
the addition of infinitesimal noise. The zero-noise limit can be handled by
Perron-Frobenius theory, just as the zero-diffusivity limit for the fast dynamo
problem. Random multiplicative models do not possess Kolmogorov 1941 (K41)
scaling because of a large-deviations effect. Our numerical studies indicate
that deterministic multiplicative models can be chaotic and still have exact
K41 scaling. A mechanism is suggested for avoiding large deviations, which is
present in maps with a neutrally unstable fixed point.Comment: 14 pages, plain LaTex, 6 figures available upon request as hard copy
(no local report #