7 research outputs found

    Comparison of deposition images obtained by use of an ultrafine 99m-technetium-labeled carbon dry aerosol with ventilation images obtained by use of 81m-krypton gas for evaluation of pulmonary dysfunction in calves.

    Full text link
    OBJECTIVE: To characterize the accuracy of an ultrafine 99m-technetium-labeled carbon dry aerosol for use in assessment of regional ventilation in calves with pulmonary dysfunction. ANIMALS: 7 Belgian White and Blue calves. PROCEDURE: The ultrafine aerosol was assessed by comparing deposition (D) images with ventilation (V) images obtained by use of 81 m-krypton (81mKr) gas via D-to-V ratio (D:V) image analysis in calves during spontaneous breathing (SB) and during experimentally induced pulmonary dysfunction (ePD). RESULTS: Mismatching index (LrTot) calculated on the D:V images revealed a good match (LrTot, 0.96 +/- 0.01) between D and V distribution patterns in calves during SB. Calculation of the ultrafine aerosol penetration index relative to 81mKr (PIRel) revealed preferential distribution of the ultrafine aerosol in lung parenchyma (PIRel, 1.13 +/- 0.11). In ePD, heterogeneity in the D:V distribution was observed (LrTot, 0.78 +/- 0.10) as a result of ultrafine aerosol particles impaction in airways as indicated by PIRel (0.66 +/- 0.16) and a proportion of pixels more radioactive in D images, compared with V images, that was located in the central part of the lung (475 +/- 77% in ePD vs 32.8 +/- 5.7% in SB). However, this central deposition did not prevent visual examination of the entire ventilated lung. CONCLUSIONS AND CLINICAL RELEVANCE: The ultrafine aerosol appears suitable for use in examination of ventilated parts of lungs of cattle, even those with impaired pulmonary function. However, airway impaction of ultrafine aerosol particles impedes the quantification of regional ventilation in cattle with abnormal lung function

    How much can diptera-borne viruses persist over unfavourable seasons

    Get PDF
    Diptera are vectors of major human and animal pathogens worldwide, such as dengue, West-Nile or bluetongue viruses. In seasonal environments, vector-borne disease occurrence varies with the seasonal variations of vector abundance. We aimed at understanding how diptera-borne viruses can persist for years under seasonal climates while vectors overwinter, which should stop pathogen transmission during winter. Modeling is a relevant integrative approach for investigating the large panel of persistence mechanisms evidenced through experimental and observational studies on specific biological systems. Inter-seasonal persistence of virus may occur in hosts due to viremia duration, chronic infection, or vertical transmission, in vector resistance stages, and due to a low continuous transmission in winter. Using a generic stochastic modeling framework, we determine the parameter ranges under which virus persistence could occur via these different mechanisms. The parameter ranges vary according to the host demographic regime: for a high host population turnover, persistence increases with the mechanism parameter, whereas for a low turnover, persistence is maximal for an optimal range of parameter. Persistence in hosts due to long viremia duration in a few hosts or due to vertical transmission is an effective strategy for the virus to overwinter. Unexpectedly, a low continuous transmission during winter does not give rise to certain persistence, persistence barely occurring for a low turnover of the susceptible population. We propose a generic framework adaptable to most diptera-borne diseases. This framework allows ones to assess the plausibility of each persistence mechanism in real epidemiological situations and to compare the range of parameter values theoretically allowing persistence with the range of values determined experimentally

    Kovinski kristali, kovinska vez

    Full text link
    Myxoma virus (MYXV) induces a lethal disease called Myxomatosis in European rabbits. MYXV is one of the rare viruses that encodes an α2,3-sialyltransferase through its M138L gene. In this study, we showed that although the absence of the enzyme was not associated with any in vitro deficit, the M138L deficient strains are highly attenuated in vivo. Indeed, while all rabbits infected with the parental and the revertant strains died within 9 days post-infection from severe myxomatosis, all but one rabbit inoculated with the M138L deficient strains survived the infection. In primary lesions, this resistance to the infection was associated with an increased ability of innate immune cells, mostly neutrophils, to migrate to the site of virus replication at 4 days post-infection. This was followed by the development of a better specific immune response against MYXV. Indeed, at day 9 post-infection, we observed an important proliferation of lymphocytes and an intense congestion of blood vessels in lymph nodes after M138L knockouts infection. Accordingly, in these rabbits, we observed an intense mononuclear cell infiltration throughout the dermis in primary lesions and higher titers of neutralizing antibodies. Finally, this adaptive immune response provided protection to these surviving rabbits against a challenge with the MYXV WT strain. Altogether, these results show that expression of the M138L gene contributes directly or indirectly to immune evasion by MYXV. In the future, these results could help us to better understand the pathogenesis of myxomatosis but also the importance of glycans in regulation of immune responses.info:eu-repo/semantics/publishe
    corecore