8 research outputs found
SESAME (SEquence Sorter & AMplicon Explorer): genotyping based on high-throughput multiplex amplicon sequencing
Summary: Characterizing genetic diversity through genotyping short amplicons is central to evolutionary biology. Next-generation sequencing (NGS) technologies changed the scale at which these type of data are acquired. SESAME is a web application package that assists genotyping of multiplexed individuals for several markers based on NGS amplicon sequencing. It automatically assigns reads to loci and individuals, corrects reads if standard samples are available and provides an intuitive graphical user interface (GUI) for allele validation based on the sequences and associated decision-making tools. The aim of SESAME is to help allele identification among a large number of sequences
Gestion des personnels publics: Evolutions récentes et perspectives
National audienceCet article présente un état des lieux et des scénarios d'évolution possibles sur la gestion des personnels publics en France. Il aborde successivement trois axes d'analyse (l'individualisation, la dualisation et la professionnalisation) et conclut par une réflexion sur les relations professionnelles dans la fonction publique française
Isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere
Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and O-18/O-16 in water and C-13/C-12, O-18/O-16, O-17/O-16, and (CO)-C-13-O-18/(CO)-C-12-O-16 in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established similar to 4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing