7 research outputs found
Recommended from our members
Predicting moisture problems in low-slope roofing
Moisture intrusion is the major reason why low-slope roofing systems fail prematurely. With approximately 75% of all roofing activity being reroofing, the roofing professional is faced with deciding what to do with an existing wet roof on almost a daily basis. This paper describes finite-difference computer modeling that has been performed to address moisture control in low-slope roof systems. Based on a large database of finite difference modeling results, algorithms have been developed that allow the roofing practitioners to simply determine if a roofing system design requires a vapor retarder or if the system can be modified to enhance its tolerance for small leaks. This paper illustrates how modeling results were obtained, describes the process employed to develop the algorithms, and demonstrates how these algorithms can be used to design a moisture tolerant low-slope roof. The range of applicability and limitations of these algorithms is also detailed
Recommended from our members
A new look at moisture control in low slope roofing
One of the criteria for a moisture-tolerant roof is that moisture accumulation in a roofing system must not be large enough to cause condensation within the roof, since this can damage the insulation and reduce its effectiveness. Failing this criterion would require the inclusion of a vapor retarder into the roofing system. We have tested this requirement using computer simulations for a series of new roofing systems and environmental conditions. This paper uses the database from those simulations to develop a simplified method to predict condensation control using only variables associated with the roof and environmental conditions. This method assesses the potential for condensation within the roof assembly without having to perform a computer simulation. Using the computer simulation output data, the moisture accumulation inside each of the roofing systems was calculated. A critical threshold of moisture accumulation was assigned by analyzing the roofing systems which fail to prevent condensation from occurring within the roofing system. An empirical equation for moisture accumulation as a function of roof system and environmental condition variables is developed. The moisture accumulation calculated using this relationship correlates well with the moisture accumulation based on the results of computer simulations. The ability of these two different relationships for moisture accumulation to predict condensation control using the established critical threshold is assessed. Accuracy of both methods is over 95%
Recommended from our members
A procedure for analyzing energy and global warming impacts of foam insulation in U.S. commercial buildings
The objective of this paper is to develop a procedure for evaluating the energy and global warming impacts of alternative insulation technologies for US commercial building applications. The analysis is focused on the sum of the direct contribution of greenhouse gas emissions from a system and the indirect contribution of the carbon dioxide emission resulting from the energy required to operate the system over its expected lifetime. In this paper, parametric analysis was used to calculate building related CO{sub 2} emission in two US locations. A retail mail building has been used as a model building for this analysis. For the analyzed building, minimal R-values of insulation are estimated using ASHRAE 90.1 requirements
Recommended from our members
The performance check between whole building thermal performance criteria and exterior wall measured clear wall R-value, thermal bridging, thermal mass, and airtightness
At the last IEA Annex 32 meeting it was proposed that the annex develop the links between level 1 (the whole building performance) and level 2 (the envelope system). This paper provides a case study of just that type of connection. An exterior wall mockup is hot box tested and modeled in the laboratory. Measurements of the steady state and dynamic behavior of this mockup are used as the basis to define the thermal bridging, thermal mass benefit and air tightness of the whole wall system. These level two performance characteristics are related to the whole building performance. They can be analyzed by a finite difference modeling of the wall assembly. An equivalent wall theory is used to convert three dimensional heat flow to one dimensional terms that capture thermal mass effects, which in turn are used in a common whole building simulation model. This paper illustrates a performance check between the thermal performance of a Massive ICF (Insulating Concrete Form) wall system mocked up (level 2) and Whole Building Performance criteria (level 1) such as total space heating and cooling loads (thermal comfort)