3 research outputs found

    Snow Cover Variability and Trend Over the Hindu Kush Himalayan Region Using MODIS and SRTM Data

    Get PDF
    Snow cover changes have a direct bearing on the regional and global energy and water cycles and the change in the Earth\u27s climate conditions. We studied the relatively long-term (2000–2017) altitudinal spatiotemporal changes in the coverage of snow and glaciers in one of the world\u27s largest mountainous regions, the Hindu Kush Himalayan (HKH) region, including Tibet, using remote sensing data (5 km grid resolution) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra satellite. This dataset provided a unique opportunity to study zonal and hypsographic changes in the intra-annual (accumulating season and melting season) and interannual variations in snow and glacial cover over the HKH region. The zonal and altitudinal (hypsographic) analyses were carried out for the melting season and accumulating season. The altitude-wise linear trend analysis (Pearson\u27s) of snow cover, shown as a hypsographic curve, clearly indicates a major decline in snow cover (average of 5 % or more at 100 m interval aggregates) between 4000–4500 and 5500–6000 m altitudes, which is consistent with the median trend (Theil–Sen – TS) and the monotonic trend (Mann–Kendall – MK; statistics) analysis. This analysis also revealed the regions and altitudes where major and statistically significant increases (10 % to 30 %) or decreases (−10 % to −30 %) in snow cover are identified. The extrapolation of the altitude-wise linear trend shows that it may take between ∼ 74 and 7900 years, for 3001–6000 and 6000–7000 m altitude zones respectively, for mean snow cover to decline approximately 25 % in the HKH. More detailed analysis based on longer observational records and model simulations is warranted to better understand the underlying factors, processes, and feedbacks that affect the dynamic of snow cover in HKH. These preliminary results suggest a need for continued monitoring of this highly sensitive region to climate variability and change that depends on snow as a major source of freshwater for all human activities

    Rise in Mid-Tropospheric Temperature Trend (MSU/AMSU 1978–2022) over the Tibet and Eastern Himalayas

    No full text
    The high-altitude Hindu Kush-Himalayan region (HKH, average ~5 km from msl) and the adjacent Indo-Gangetic plains (IG plains, ~0–250 m msl), due to their geographical location and complex topography, are reported to be highly sensitive to climatic changes. Recent studies show that the impacts of climate change and associated changes in water resources (glacial/snow melt water and rainfall) in this region are multifaceted, thereby affecting ecosystems, agriculture, industries, and inhabitants. In this study, 45 years of Microwave Sounding Unit/Advanced Microwave Sounding Unit (MSU/AMSU)-derived mid-tropospheric temperature (TMT, 3–7 km altitude) and lower tropospheric temperature (TLT, 0–3 km altitude) data from the Remote Sensing Systems (RSS Version 4.0) were utilized to analyze the overall changes in tropospheric temperature in terms of annual/monthly trends and anomalies. The current study shows that the mid-tropospheric temperature (0–3 km altitude over the HKH region) has already alarmingly increased (statistically significant) in Tibet, the western Himalayas, and the eastern Himalayas by 1.49 °K, 1.30 °K, and 1.35 °K, respectively, over the last 45 years (1978–2022). As compared to a previous report (TMT trend for 30 years, 1979–2008), the present study of TMT trends for 45 years (1978–2022) exhibits a rise in percent change in the trend component in the high-altitude regions of Tibet, the western Himalayas, and the eastern Himalayas by approximately 310%, 80%, and 170%, respectively. In contrast, the same for adjacent plains (the western and eastern IG plains) shows a negligible or much lower percent change (0% and 40%, respectively) over the last 14 years. Similarly, dust source regions in Africa, Arabia, the Middle East, Iran, and Pakistan show only a 130% change in warming trends over the past 14 years. In the monthly breakup, the ‘November to March’ period usually shows a higher TMT trend (with peaks in December, February, and March) compared to the rest of the months, except in the western Himalayas, where the peak is observed in May, which can be attributed to the peak dust storm activity (March to May). Snow cover over the HKH region, where the growing season is known to be from September to February, is also reported to show the highest snow cover in February (with the peak in January, February, or March), which coincides with the warmest period in terms of anomaly and trend observed in the long-term mid-tropospheric temperature data (1978–2022). Thus, the current study highlights that the statistically significant and positive TMT warming trend (95% CI) and its observed acceleration over the high-altitude region (since 2008) can be attributed to being one of the major factors causing an acceleration in the rate of melting of snow cover and glaciers, particularly in Tibet and the Eastern Himalayas

    A novel multi-model estimation of phosphorus in coal and its ash using FTIR spectroscopy

    No full text
    Abstract The level of phosphorus must be carefully monitored for proper and effective utilization of coal and coal ash. The phosphorus content needs to be assessed to optimize combustion efficiency and maintenance costs of power plants, ensure quality, and minimize the environmental impact of coal and coal ash. The detection of low levels of phosphorus in coal and coal ash is a significant challenge due to its complex chemical composition and low concentration levels. Effective monitoring requires accurate and sensitive equipment for the detection of phosphorus in coal and coal ash. X-ray fluorescence (XRF) is a commonly used analytical technique for the determination of phosphorus content in coal and coal ash samples but proves challenging due to their comparatively weak fluorescence intensity. Fourier Transform Infrared spectroscopy (FTIR) emerges as a promising alternative that is simple, rapid, and cost-effective. However, research in this area has been limited. Until now, only a limited number of research studies have outlined the estimation of major elements in coal, predominantly relying on FTIR spectroscopy. In this article, we explore the potential of FTIR spectroscopy combined with machine learning models (piecewise linear regression—PLR, partial least square regression—PLSR, random forest—RF, and support vector regression—SVR) for quantifying the phosphorus content in coal and coal ash. For model development, the methodology employs the mid-infrared absorption peak intensity levels of phosphorus-specific functional groups and anionic groups of phosphate minerals at various working concentration ranges of coal and coal ash. This paper proposes a multi-model estimation (using PLR, PLSR, and RF) approach based on FTIR spectral data to detect and rapidly estimate low levels of phosphorus in coal and its ash (R 2^2 2 of 0.836, RMSE of 0.735 ppm, RMSE (%) of 34.801, MBE of − 0.077 ppm, MBE (%) of 5.499, and MAE of 0.528 ppm in coal samples and R 2^2 2 of 0.803, RMSE of 0.676 ppm, RMSE (%) of 38.050, MBE of − 0.118 ppm, MBE (%) of 4.501, and MAE of 0.474 ppm in coal ash samples). Our findings suggest that FTIR combined with the multi-model approach combining PLR, PLSR, and RF regression models is a reliable tool for rapid and near-real-time measurement of phosphorus in coal and coal ash and can be suitably modified to model phosphorus content in other natural samples such as soil, shale, etc
    corecore