3 research outputs found

    Study on sinusoidal estimation deviation of electrostatic actuated MEMS mirror torsion angle

    No full text
    Electrostatic MEMS micromirrors usually work in resonant state to obtain large amplitude of torsion angle. The real-time prediction of MEMS micromirror torsion angle is calculated according to the measured resonant amplitude and phase under the assumption that the relationship between the torsion angle and time is sinusoidal. However, there are few reports on the deviation of this torsion angle predication based on sinusoidal assumption. In this paper, the real resonant torsion trajectory of C1100 MEMS micromirror under different driving frequencies and voltages is measured by using microscopic laser Doppler method, and the deviation between the real trajectory and the trajectory fitted by sinusoidal curve is compared. The results show that the real trajectory of the MEMS micromirror driven by square wave is not completely consistent with the sinusoidal estimation, and the deviation increases with the increase of the torsional angle amplitude. By obtaining the frequency domain components of the torsion angle signal using FFT method, the main reason of this prediction deviation is due to composition of harmonic signals on base frequency signal. The research results reveal that the sinusoidal assumption method is only suitable for situations when the optical angle accuracy is less than 0.1°

    Genetic Mapping of Prince Rupprecht’s Larch (Larix principis-rupprechtii Mayr) by Specific-Locus Amplified Fragment Sequencing

    No full text
    A high-density genetic linkage map is essential for plant genetics and genomics research. However, due to the deficiency of genomic data and high-quality molecular markers, no genetic map has been published for Prince Rupprecht’s larch (Larix principis-rupprechtii Mayr), a conifer species with high ecological and commercial value in northern China. In this study, 145 F1 progeny individuals from an intraspecific cross between two elite clones of L. principis-rupprechtii and their parents were employed to construct the first genetic map in this important tree species using specific-locus amplified fragment sequencing (SLAF-seq). After preprocessing, the procedure yielded 300.20 Gb of raw data containing 1501.22 M pair-end reads. A total of 324,352 SNP markers were detected and 122,785 of them were polymorphic, with a polymorphism rate of 37.86%. Ultimately, 6099 SNPs were organized into a genetic map containing 12 linkage groups, consistent with the haploid chromosome number of larch and most other species in the Pinaceae family. The linkage map spanned 2415.58 cM and covered 99.6% of the L. principis-rupprechtii genome with an average of 0.4 cM between adjacent markers. To the best of our knowledge, this map is the first reference map for L. principis-rupprechtii, as well as the densest one obtained in larch species thus far. The genome-wide SNPs and the high-resolution genetic map will provide a foundation for future quantitative trait loci mapping, map-based cloning, marker-assisted selection, comparative genomics, and genome sequence assembly for larch trees
    corecore