22 research outputs found

    The DiCOVA 2021 Challenge: an encoder-decoder approach for COVID-19 recognition from coughing audio

    Get PDF

    A deep audiovisual approach for human confidence classification

    Get PDF
    Research on self-efficacy and confidence has spread across several subfields of psychology and neuroscience. The role of one’s confidence is very crucial in the formation of attitude and communication skills. The importance of differentiating the levels of confidence is quite visible in this domain. With the recent advances in extracting behavioral insight from a signal in multiple applications, detecting confidence is found to have great importance. One such prominent application is detecting confidence in interview conversations. We have collected an audiovisual data set of interview conversations with 34 candidates. Every response (from each of the candidate) of this data set is labeled with three levels of confidence: high, medium, and low. Furthermore, we have also developed algorithms to efficiently compute such behavioral confidence from speech and video. A deep learning architecture is proposed for detecting confidence levels (high, medium, and low) from an audiovisual clip recorded during an interview. The achieved unweighted average recall (UAR) reaches 85.9% on audio data and 73.6% on video data captured from an interview session

    Laughter as a controller in a stress buster game

    Get PDF

    SYNTHESIS, CHARACTERIZATION AND QUANTITATION OF REGIOISOMERIC IMPURITY IN NIMODIPINE BULK AND FORMULATION

    Get PDF
    Objective: The present research work was directed towards the synthesis characterization and quantitation of regioisomeric impurity of Nimodipine i.e. diethyl 1, 4-dihydro-2,6-dimethyl pyridine dicarboxylate in bulk and tablet formulation, by UV,IR,NMR and GC-MS techniques and a RP-HPLC method was developed as per ICH Q2B guidelines for quantitation of 1, 4-Dihydro-2, 6-Dimethyl-4-(p-nitro phenyl) pyridine-3,5 dicarboxylate (NI) from bulk and formulation. Methods: The synthesis of NI was carried out by Hantzch pyridine synthesis, by using p-nitrobenzaldehyde, ethylacetoacetate, in presence of ammonia and methanol as a catalyst. The percentage yield was found to be 89.29%. Recrystallization and purification of NI was done. The preliminary evaluation was done on laboratory scale via melting point, elemental analysis and TLC. Results: The melting point of impurity was found to be 156-1580C. The TLC of impurity was carried by using Chloroform: Methanol (9:1) and the Rf was found to be 0.79. The confirmation of structure of NI was carried out by using sophisticated techniques i.e., FT-IR, NMR (13C and 1H), GC-MS etc. The RP-HPLC method was developed to quantify the NI in Nimodipine bulk and formulation as per ICH Q2B guidelines. The method validation was done as per ICH guidelines. Conclusion: The validated optimized method was found to be linear, précised, robust, rugged and accurate. Finally NI was quantified from bulk Nimodipine and its marketed tablet formulation. It was concluded that the amount of NI, present in tablet was found to be 0.1% and in the bulk 0.067% respectively. Thus it was revealed that the NI was found to be within the limit laid down ICH guidelines (Not more than 0.1 %)

    COVID-19 biomarkers in speech: on source and filter components

    Get PDF

    AI-based human audio processing for COVID-19: a comprehensive overview

    No full text
    The Coronavirus (COVID-19) pandemic impelled several research efforts, from collecting COVID-19 patients’ data to screening them for virus detection. Some COVID-19 symptoms are related to the functioning of the respiratory system that influences speech production; this suggests research on identifying markers of COVID-19 in speech and other human generated audio signals. In this article, we give an overview of research on human audio signals using ’Artificial Intelligence’ techniques to screen, diagnose, monitor, and spread the awareness about COVID-19. This overview will be useful for developing automated systems that can help in the context of COVID-19, using non-obtrusive and easy to use bio-signals conveyed in human non-speech and speech audio productions
    corecore