5 research outputs found

    Long noncoding RNA PANDA and scaffold-attachment-factor SAFA control senescence entry and exit

    No full text
    International audienceCellular senescence is a stable cell cycle arrest that limits the proliferation of pre-cancerous cells. Here we demonstrate that scaffold-attachment-factor A (SAFA) and the long noncoding RNA PANDA differentially interact with polycomb repressive complexes (PRC1 and PRC2) and the transcription factor NF-YA to either promote or suppress senescence. In proliferating cells, SAFA and PANDA recruit PRC complexes to repress the transcription of senescence-promoting genes. Conversely, the loss of SAFA-PANDA-PRC interactions allows expression of the senescence programme. Accordingly, we find that depleting either SAFA or PANDA in proliferating cells induces senescence. However, in senescent cells where PANDA sequesters transcription factor NF-YA and limits the expression of NF-YA-E2F-coregulated proliferation-promoting genes, PANDA depletion leads to an exit from senescence. Together, our results demonstrate that PANDA confines cells to their existing proliferative state and that modulating its level of expression can cause entry or exit from senescence

    Effect of Changes in the Flexible Arm on tRNase Z Processing Kinetics*

    No full text
    tRNAs are transcribed as precursors and processed in a series of reactions culminating in aminoacylation and translation. Central to tRNA maturation, the 3′ end trailer can be endonucleolytically removed by tRNase Z. A flexible arm (FA) extruded from the body of tRNase Z consists of a structured ααββ hand that binds the elbow of pre-tRNA. Deleting the FA hand causes an almost 100-fold increase in Km with little change in kcat, establishing its contribution to substrate recognition/binding. Remarkably, a 40-residue Ala scan through the FA hand reveals a conserved leucine at the ascending stalk/hand boundary that causes practically the same increase in Km as the hand deletion, thus nearly eliminating its ability to bind substrate. Km also increases with substitutions in the GP (α4–α5) loop and at other conserved residues in the FA hand predicted to contact substrate based on the co-crystal structure. Substitutions that reduce kcat are clustered in the β10–β11 loop
    corecore