5 research outputs found
Recommended from our members
Dilated cardiomyopathy mutation in beta-cardiac myosin enhances actin activation of the power stroke and phosphate release
Inherited mutations in human beta-cardiac myosin (M2β) can lead to severe forms of heart failure. The E525K mutation in M2β is associated with dilated cardiomyopathy (DCM) and was found to stabilize the interacting heads motif (IHM) and autoinhibited super-relaxed (SRX) state in dimeric heavy meromyosin. However, in monomeric M2β subfragment 1 (S1) we found that E525K enhances (threefold) the maximum steady-state actin-activated ATPase activity (k cat) and decreases (eightfold) the actin concentration at which ATPase is one-half maximal (K ATPase). We also found a twofold to fourfold increase in the actin-activated power stroke and phosphate release rate constants at 30 μM actin, which overall enhanced the duty ratio threefold. Loaded motility assays revealed that the enhanced intrinsic motor activity translates to increased ensemble force in M2β S1. Glutamate 525, located near the actin binding region in the so-called activation loop, is highly conserved and predicted to form a salt bridge with another conserved residue (lysine 484) in the relay helix. Enhanced sampling molecular dynamics simulations predict that the charge reversal mutation disrupts the E525-K484 salt bridge, inducing conformations with a more flexible relay helix and a wide phosphate release tunnel. Our results highlight a highly conserved allosteric pathway associated with actin activation of the power stroke and phosphate release and suggest an important feature of the autoinhibited IHM is to prevent this region of myosin from interacting with actin. The ability of the E525K mutation to stabilize the IHM likely overrides the enhanced intrinsic motor properties, which may be key to triggering DCM pathogenesis
Recommended from our members
A Genetic Screen Identifies FAN1, a Fanconi Anemia-Associated Nuclease Necessary for DNA Interstrand Crosslink Repair
The Fanconi anemia (FA) pathway is responsible for interstrand crosslink repair. At the heart of this pathway is the FANCI-FAND2 (ID) complex, which, upon ubiquitination by the FA core complex, travels to sites of damage to coordinate repair that includes nucleolytic modification of the DNA urrounding the lesion and translesion synthesis. How the ID complex regulates these events is unknown. Here we describe a shRNA screen that led to the identification of two nucleases necessary for crosslink repair, FAN1 (KIAA1018) and EXDL2. FAN1 colocalizes at sites of DNA damage with the ID complex in a manner dependent on FAN1’s ubiquitin-binding domain (UBZ), the ID complex, and monoubiquitination of FANCD2. FAN1 possesses intrinsic 50 -30 exonuclease activity and endonuclease activity that cleaves nicked and branched structures. We propose that FAN1 is a repair nuclease that is recruited to sites of crosslink damage in part through binding the ubiquitinated ID complex through its UBZ domain
Long noncoding RNA PANDA and scaffold-attachment-factor SAFA control senescence entry and exit
International audienceCellular senescence is a stable cell cycle arrest that limits the proliferation of pre-cancerous cells. Here we demonstrate that scaffold-attachment-factor A (SAFA) and the long noncoding RNA PANDA differentially interact with polycomb repressive complexes (PRC1 and PRC2) and the transcription factor NF-YA to either promote or suppress senescence. In proliferating cells, SAFA and PANDA recruit PRC complexes to repress the transcription of senescence-promoting genes. Conversely, the loss of SAFA-PANDA-PRC interactions allows expression of the senescence programme. Accordingly, we find that depleting either SAFA or PANDA in proliferating cells induces senescence. However, in senescent cells where PANDA sequesters transcription factor NF-YA and limits the expression of NF-YA-E2F-coregulated proliferation-promoting genes, PANDA depletion leads to an exit from senescence. Together, our results demonstrate that PANDA confines cells to their existing proliferative state and that modulating its level of expression can cause entry or exit from senescence
Effect of Changes in the Flexible Arm on tRNase Z Processing Kinetics*
tRNAs are transcribed as precursors and processed in a series of reactions culminating in aminoacylation and translation. Central to tRNA maturation, the 3′ end trailer can be endonucleolytically removed by tRNase Z. A flexible arm (FA) extruded from the body of tRNase Z consists of a structured ααββ hand that binds the elbow of pre-tRNA. Deleting the FA hand causes an almost 100-fold increase in Km with little change in kcat, establishing its contribution to substrate recognition/binding. Remarkably, a 40-residue Ala scan through the FA hand reveals a conserved leucine at the ascending stalk/hand boundary that causes practically the same increase in Km as the hand deletion, thus nearly eliminating its ability to bind substrate. Km also increases with substitutions in the GP (α4–α5) loop and at other conserved residues in the FA hand predicted to contact substrate based on the co-crystal structure. Substitutions that reduce kcat are clustered in the β10–β11 loop