53 research outputs found

    Review of the phylogenetic reconstruction of the diatoms using molecular tools with an analysis of a seven gene data set using multiple outgroups and morphological data for a total evidence approach

    Get PDF
    Medlin tested multiple outgroups with 18S rRNA dataset and found that haptophytes, ciliates, prasinophytes and chlorophytes recovered monophyletic Coscinodiscophyceae, Mediophyceae, Bacillariophyceae with strong BT support. Theriot et al. added six plastid genes to the diatom dataset but with only one outgroup, Bolidomonas and omitted most of the V4 region of that gene and bases beyond position 1200. They recovered a grade of clades from radial into polar centrics, into araphid pennates into the monophyletic raphid pennates. Their structural gradation hypothesis (SGH) contrasts to the CMB hypothesis of Medlin and Kaczmarska. We selected only those species with all seven genes from their dataset and added the entire 18S RNA gene to make a new dataset to which we sequentially added heterokont, haptophyte, and prasinophyte/chlorophyte outgroups. We analysed it using 1) evolutionary models with parameters relaxed across genes and codon positions for coding sequences (codon partition analysis scheme = CP) and 2) no partitions or evolutionary models as applied to each gene, using only optimised models of evolution for the entire dataset (NCP). CP recovered a monophyletic mediophycean and bacillariophycean clade and three coscinodiscophycean clades. Sequentially adding more outgroups did not change clade topology but dramatically increased BT support. NCP recovered a monophyletic Coscinodiscophyceae and Bacillariophyceae and three Mediophyceae clades, each with strong bootstrap support. Morphological data was added and analyzed similarly. NCP recovered three monophyletic classes and CP recovered the Bacillariophyceae arising from within the Mediophyceae, making the subphylum monophyletic but the class was paraphyletic. Each analysis was tested with SH tests in PAUP and IQTree. Plastid inheritance in the diatoms is not homogenous and thus their phylogenies may not be homologous. If so, then our application of gene models may be overparametrising the data. The application of no partitioning models with morphological data supported the CMB hypothesis

    Morphological and Molecular Evolution Are Not Linked in Lamellodiscus (Plathyhelminthes, Monogenea)

    Get PDF
    Lamellodiscus Johnston & Tiegs 1922 (Monogenea, Diplectanidae) is a genus of common parasites on the gills of sparid fishes. Here we show that this genus is probably undergoing a fast molecular diversification, as reflected by the important genetic variability observed within three molecular markers (partial nuclear 18S rDNA, Internal Transcribed Spacer 1, and mitonchondrial Cytochrome Oxidase I). Using an updated phylogeny of this genus, we show that molecular and morphological evolution are weakly correlated, and that most of the morphologically defined taxonomical units are not consistent with the molecular data. We suggest that Lamellodiscus morphology is probably constrained by strong environmental (host-induced) pressure, and discuss why this result can apply to other taxa. Genetic variability within nuclear 18S and mitochondrial COI genes are compared for several monogenean genera, as this measure may reflect the level of diversification within a genus. Overall our results suggest that cryptic speciation events may occur within Lamellodiscus, and discuss the links between morphological and molecular evolution

    Morphology, Genome Plasticity, and Phylogeny in the Genus Ostreococcus Reveal a Cryptic Species, O. mediterraneus sp. nov. (Mamiellales, Mamiellophyceae)

    Get PDF
    Coastal marine waters in many regions worldwide support abundant populations of extremely small (1-3 μm diameter) unicellular eukaryotic green algae, dominant taxa including several species in the class Mamiellophyceae. Their diminutive size conceals surprising levels of genetic diversity and defies classical species’ descriptions. We present a detailed analysis within the genus Ostreococcus and show that morphological characteristics cannot be used to describe diversity within this group. Karyotypic analyses of the best-characterized species O. tauri show it to carry two chromosomes that vary in size between individual clonal lines, probably an evolutionarily ancient feature that emerged before species’ divergences within the Mamiellales. By using a culturing technique specifically adapted to members of the genus Ostreococcus, we purified >30 clonal lines of a new species, Ostreococcus mediterraneus sp. nov., previously known as Ostreococcus clade D, that has been overlooked in several studies based on PCR-amplification of genetic markers from environment-extracted DNA. Phylogenetic analyses of the S-adenosylmethionine synthetase gene, and of the complete small subunit ribosomal RNA gene, including detailed comparisons of predicted ITS2 (internal transcribed spacer 2) secondary structures, clearly support that this is a separate species. In addition, karyotypic analyses reveal that the chromosomal location of its ribosomal RNA gene cluster differs from other Ostreococcus clades

    Patterns of co-speciation and host switching in primate malaria parasites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The evolutionary history of many parasites is dependent on the evolution of their hosts, leading to an association between host and parasite phylogenies. However, frequent host switches across broad phylogenetic distances may weaken this close evolutionary link, especially when vectors are involved in parasites transmission, as is the case for malaria pathogens. Several studies suggested that the evolution of the primate-infective malaria lineages may be constrained by the phylogenetic relationships of their hosts, and that lateral switches between distantly related hosts may have been occurred. However, no systematic analysis has been quantified the degree of phylogenetic association between primates and their malaria parasites.</p> <p>Methods</p> <p>Here phylogenetic approaches have been used to discriminate statistically between events due to co-divergence, duplication, extinction and host switches that can potentially cause historical association between <it>Plasmodium </it>parasites and their primate hosts. A Bayesian reconstruction of parasite phylogeny based on genetic information for six genes served as basis for the analyses, which could account for uncertainties about the evolutionary hypotheses of malaria parasites.</p> <p>Results</p> <p>Related lineages of primate-infective <it>Plasmodium </it>tend to infect hosts within the same taxonomic family. Different analyses testing for congruence between host and parasite phylogenies unanimously revealed a significant association between the corresponding evolutionary trees. The most important factor that resulted in this association was host switching, but depending on the parasite phylogeny considered, co-speciation and duplication may have also played some additional role. Sorting seemed to be a relatively infrequent event, and can occur only under extreme co-evolutionary scenarios. The concordance between host and parasite phylogenies is heterogeneous: while the evolution of some malaria pathogens is strongly dependent on the phylogenetic history of their primate hosts, the congruent evolution is less emphasized for other parasite lineages (e.g. for human malaria parasites). Estimation of ancestral states of host use along the phylogenetic tree of parasites revealed that lateral transfers across distantly related hosts were likely to occur in several cases. Parasites cannot infect all available hosts, and they should preferentially infect hosts that provide a similar environment for reproduction. Marginally significant evidence suggested that there might be a consistent variation within host ranges in terms of physiology.</p> <p>Conclusion</p> <p>The evolution of primate malarias is constrained by the phylogenetic associations of their hosts. Some parasites can preserve a great flexibility to infect hosts across a large phylogenetic distance, thus host switching can be an important factor in mediating host ranges observed in nature. Due to this inherent flexibility and the potential exposure to various vectors, the emergence of new malaria disease in primates including humans cannot be predicted from the phylogeny of parasites.</p

    Life-Cycle and Genome of OtV5, a Large DNA Virus of the Pelagic Marine Unicellular Green Alga Ostreococcus tauri

    Get PDF
    Large DNA viruses are ubiquitous, infecting diverse organisms ranging from algae to man, and have probably evolved from an ancient common ancestor. In aquatic environments, such algal viruses control blooms and shape the evolution of biodiversity in phytoplankton, but little is known about their biological functions. We show that Ostreococcus tauri, the smallest known marine photosynthetic eukaryote, whose genome is completely characterized, is a host for large DNA viruses, and present an analysis of the life-cycle and 186,234 bp long linear genome of OtV5. OtV5 is a lytic phycodnavirus which unexpectedly does not degrade its host chromosomes before the host cell bursts. Analysis of its complete genome sequence confirmed that it lacks expected site-specific endonucleases, and revealed the presence of 16 genes whose predicted functions are novel to this group of viruses. OtV5 carries at least one predicted gene whose protein closely resembles its host counterpart and several other host-like sequences, suggesting that horizontal gene transfers between host and viral genomes may occur frequently on an evolutionary scale. Fifty seven percent of the 268 predicted proteins present no similarities with any known protein in Genbank, underlining the wealth of undiscovered biological diversity present in oceanic viruses, which are estimated to harbour 200Mt of carbon

    Phylogenetic reconstruction of diatoms using a seven-gene dataset, multiple outgroups, and morphological data for a total evidence approach

    No full text
    Medlin tested multiple outgroups with 18S rRNA dataset and found that haptophytes, ciliates, prasinophytes, and chlorophytes recovered monophyletic Coscinodiscophyceae, Mediophyceae, Bacillariophyceae (CMB) with strong BT (bootstrap) support. Theriot et al. added six plastid genes to the diatom dataset but with only one outgroup, Bolidomonas, and omitted most of the V4 region of that gene and bases beyond position 1200. They recovered a grade of clades from radial into polar centrics, into araphid pennates into the monophyletic raphid pennates. Their structural gradation hypothesis (SGH) contrasts with the CMB hypothesis of Medlin and Kaczmarska. We selected only those species with all seven genes from their dataset and added the entire 18S RNA gene to make a new dataset to which we sequentially added heterokont, haptophyte, and prasinophyte/chlorophyte outgroups. We analysed it using: (1) evolutionary models with parameters relaxed across genes and codon positions for coding sequences (codon partition analysis scheme = CP), and (2) no partitions or evolutionary models as applied to each gene, using only optimised models of evolution for the entire dataset (NCP). CP recovered a monophyletic mediophycean and bacillariophycean clade and three coscinodiscophycean clades. Sequentially adding more outgroups did not change clade topology but dramatically increased BT support. NCP recovered a monophyletic Coscinodiscophyceae and Bacillariophyceae and three Mediophyceae clades, each with strong BT support. Morphological data were added and analysed similarly. NCP recovered three monophyletic classes and CP recovered the Bacillariophyceae arising from within the Mediophyceae, making the subphylum monophyletic but the class paraphyletic. Each analysis was tested with a Shimodeira–Hasegawa (SH) test in PAUP and IQ-TREE. Plastid inheritance in the diatoms is not homogenous and thus their phylogenies may not be homologous. If so, then our application of gene models may be overparametrising the data. The application of models with no partitioning with morphological data supported the CMB hypothesis
    • …
    corecore