62 research outputs found

    Reactive Oxygen Species Are Key Mediators of Demyelination in Canine Distemper Leukoencephalitis but not in Theiler’s Murine Encephalomyelitis

    Get PDF
    (1) Background: Canine distemper virus (CDV)-induced demyelinating leukoencephalitis (CDV-DL) in dogs and Theiler’s murine encephalomyelitis (TME) virus (TMEV)-induced demyelinating leukomyelitis (TMEV-DL) are virus-induced demyelinating conditions mimicking Multiple Sclerosis (MS). Reactive oxygen species (ROS) can induce the degradation of lipids and nucleic acids to characteristic metabolites such as oxidized lipids, malondialdehyde, and 8-hydroxyguanosine. The hypothesis of this study is that ROS are key eector molecules in the pathogenesis of myelin membrane breakdown in CDV-DL and TMEV-DL. (2) Methods: ROS metabolites and antioxidative enzymes were assessed using immunofluorescence in cerebellar lesions of naturally CDV-infected dogs and spinal cord tissue of TMEV-infected mice. The transcription of selected genes involved in ROS generation and detoxification was analyzed using gene-expression microarrays in CDV-DL and TMEV-DL. (3) Results: Immunofluorescence revealed increased amounts of oxidized lipids, malondialdehyde, and 8-hydroxyguanosine in CDV-DL while TMEV-infected mice did not reveal marked changes. In contrast, microarray-analysis showed an upregulated gene expression associated with ROS generation in both diseases. (4) Conclusion: In summary, the present study demonstrates a similar upregulation of gene-expression of ROS generation in CDV-DL and TMEV-DL. However, immunofluorescence revealed increased accumulation of ROS metabolites exclusively in CDV-DL. These results suggest dierences in the pathogenesis of demyelination in these two animal models

    The impact of upstream and downstream processing on the quality of oil bodies of partially de-hulled sunflower seeds

    Get PDF
    Few publications on oil bodies or oleosomes seem concerned about their quality (chemical and physical) ex-vivo. This work attempts to identify the main factors (processing and pre-processing) that affect the quality/integrity of sunflower seed oil bodies recovered through a wet-milling process. The physical state of seeds during wet milling had a significant impact on the quality of the oil body suspension. Pre-soaking for 6 hours before wet milling and multiple washing with alkaline buffer (0.1M sodium bicarbonate) was performed to isolate high quality oil body suspensions. It was evident from different physical measurements such as particle size, ζ-potential and light microscopy that pre-soaking had a positive influence on the quality of oil body suspensions with no significant signs of aggregation or coalescence. It was also observed that the resultant washed oil body suspensions were highly surface charged (-28.4 ± 1.2 mV) indicating very stable suspension phase behavior. Washing oil bodies not only removes non-integral, extraneous proteins (derived from the seed matrix) but enriches the lipid content including Tocopherol (α-tocopherol: 491.6 mg/kg of washed oil bodies compared with 252.6 mg/kg crude oil bodies). Changes in the composition of oil bodies after washing have been observed before, but this research also monitored the size of oil bodies after washing, and our results indicate that certain factors can shift the distribution of droplet size. It is believed that any change in average size of droplets indicate the presence of disrupted oil bodies whose surface chemistry has changed enough to compromise their integrity on washing. The retention of droplet size on washing may, therefore, be diagnostic for the recovery of intact oil bodies. An assessment of the integrity of oil bodies recovered from sunflower seeds after accelerated aging (5 months) was carried out. Free fatty acid was more pronounced in oil rather than oil bodies, this could be due to the elimination of some of the free acid bound to oil body during washing. Although some minor variation was observed during seed aging, however, the oil bodies remained stable in the final suspension. The results indicate that oil body membrane was extremely robust under extreme conditions and the integrity of oil bodies was preserved. In addition, oil bodies obtained in this study were resistant to oxidation due to the presence of naturally occurring antioxidants (including vitamin E) associated with them.. The results indicate that the physical barrier of surface membrane protein (oelosin) protect oil bodies against pro-oxidants

    L-BMAA induced ER stress and enhanced caspase 12 cleavage in human neuroblastoma SH-SY5Y cells at low nonexcitotoxic concentrations

    No full text
    The cyanobacterial L-BMAA (β-N-methylamino-L-alanine) is described as a low potency excitotoxin, possibly a factor in the increased incidence of amyotrophic lateral sclerosis (ALS) and Parkinsonism dementia complex (PDC) on Guam. The latter association is intensively disputed, as L-BMAA concentrations required for toxic effects exceed those assumed to occur via food. The question thus was raised whether L-BMAA leads to neurodegeneration at non-excitotoxic conditions. Using human SH-SY5Y neuroblastoma cells, L-BMAA-transport, incorporation into proteins and subsequent impairment of cellular protein homeostasis were investigated. Binding of L-BMAA to intracellular proteins, but no clear protein incorporation was detected in response to (14)C-L-BMAA exposures. Nevertheless, low L-BMAA concentrations (≥0.1 mM, 48 hours) increased protein ubiquitination, 20S proteasomal and caspase 12 activity, expression of the ER-stress marker CHOP, and enhanced phosphorylation of elf2α in SH-SY5Y. In contrast, high L-BMAA concentrations (≥1 mM, 48 hours) increased ROS and protein oxidization, which were partially ameliorated by co-incubation vitamin E. L-BMAA mediated cytotoxicity was observable 48 hours following ≥2 mM L-BMAA treatment. Consequently, the data presented here suggest that low L-BMAA concentrations result in a dysregulation of the cellular protein homeostasis with ensuing ER stress that is independent from high concentration effects such as excitotoxicity and oxidative stress. Thus, the latter could be a contributing factor in the onset and slow progression of ALS/PDC on Guam

    Reactive Oxygen Species Are Key Mediators of Demyelination in Canine Distemper Leukoencephalitis but not in Theiler’s Murine Encephalomyelitis

    No full text
    (1) Background: Canine distemper virus (CDV)-induced demyelinating leukoencephalitis (CDV-DL) in dogs and Theiler’s murine encephalomyelitis (TME) virus (TMEV)-induced demyelinating leukomyelitis (TMEV-DL) are virus-induced demyelinating conditions mimicking Multiple Sclerosis (MS). Reactive oxygen species (ROS) can induce the degradation of lipids and nucleic acids to characteristic metabolites such as oxidized lipids, malondialdehyde, and 8-hydroxyguanosine. The hypothesis of this study is that ROS are key eector molecules in the pathogenesis of myelin membrane breakdown in CDV-DL and TMEV-DL. (2) Methods: ROS metabolites and antioxidative enzymes were assessed using immunofluorescence in cerebellar lesions of naturally CDV-infected dogs and spinal cord tissue of TMEV-infected mice. The transcription of selected genes involved in ROS generation and detoxification was analyzed using gene-expression microarrays in CDV-DL and TMEV-DL. (3) Results: Immunofluorescence revealed increased amounts of oxidized lipids, malondialdehyde, and 8-hydroxyguanosine in CDV-DL while TMEV-infected mice did not reveal marked changes. In contrast, microarray-analysis showed an upregulated gene expression associated with ROS generation in both diseases. (4) Conclusion: In summary, the present study demonstrates a similar upregulation of gene-expression of ROS generation in CDV-DL and TMEV-DL. However, immunofluorescence revealed increased accumulation of ROS metabolites exclusively in CDV-DL. These results suggest dierences in the pathogenesis of demyelination in these two animal models

    Reactive Oxygen Species Are Key Mediators of Demyelination in Canine Distemper Leukoencephalitis but not in Theiler’s Murine Encephalomyelitis

    No full text
    (1) Background: Canine distemper virus (CDV)-induced demyelinating leukoencephalitis (CDV-DL) in dogs and Theiler’s murine encephalomyelitis (TME) virus (TMEV)-induced demyelinating leukomyelitis (TMEV-DL) are virus-induced demyelinating conditions mimicking Multiple Sclerosis (MS). Reactive oxygen species (ROS) can induce the degradation of lipids and nucleic acids to characteristic metabolites such as oxidized lipids, malondialdehyde, and 8-hydroxyguanosine. The hypothesis of this study is that ROS are key eector molecules in the pathogenesis of myelin membrane breakdown in CDV-DL and TMEV-DL. (2) Methods: ROS metabolites and antioxidative enzymes were assessed using immunofluorescence in cerebellar lesions of naturally CDV-infected dogs and spinal cord tissue of TMEV-infected mice. The transcription of selected genes involved in ROS generation and detoxification was analyzed using gene-expression microarrays in CDV-DL and TMEV-DL. (3) Results: Immunofluorescence revealed increased amounts of oxidized lipids, malondialdehyde, and 8-hydroxyguanosine in CDV-DL while TMEV-infected mice did not reveal marked changes. In contrast, microarray-analysis showed an upregulated gene expression associated with ROS generation in both diseases. (4) Conclusion: In summary, the present study demonstrates a similar upregulation of gene-expression of ROS generation in CDV-DL and TMEV-DL. However, immunofluorescence revealed increased accumulation of ROS metabolites exclusively in CDV-DL. These results suggest dierences in the pathogenesis of demyelination in these two animal models
    • …
    corecore