23 research outputs found

    Determination of fungal activity in modified wood by means of micro-calorimetry and determination of total esterase activity

    Get PDF
    Beech and pine wood blocks were treated with 1,3-dimethylol-4,5-dihydroxyethylen urea (DMDHEU) to increasing weight percent gains (WPG). The resistance of the treated specimens against Trametes versicolor and Coniophora puteana, determined as mass loss, increased with increasing WPG of DMDHEU. Metabolic activity of the fungi in the wood blocks was assessed as total esterase activity (TEA) based on the hydrolysis of fluorescein diacetate and as heat or energy production determined by isothermal micro-calorimetry. Both methods revealed that the fungal activity was related with the WPG and the mass loss caused by the fungi. Still, fungal activity was detected even in wood blocks of the highest WPG and showed that the treatment was not toxic to the fungi. Energy production showed a higher consistency with the mass loss after decay than TEA; higher mass loss was more stringently reflected by higher heat production rate. Heat production did not proceed linearly, possibly due to the inhibition of fungal activity by an excess of carbon dioxide

    Effects of end-product inhibition of Cellulomonas uda anaerobic growth on cellobiose chemostat culture.

    No full text
    Cellulomonas uda was grown anaerobically in a chemostat with 3.33 and 11.41 mM cellobiose in the feed medium at dilution rates varying from 0.017 to 0.29/h. Unusual results obtained were analyzed by using curves simulating the steady-state biomass. This unusual behavior could be accounted for by a classical growth model taking end-product inhibition into account. Acetate has been identified to be the major inhibitor in the experimental conditions used. Parameters calculated from experimental observations gave theoretical curves of biomass production versus dilution rate which fitted the experimental points very well
    corecore