5 research outputs found
Structural Features of Eu<sup>3+</sup> and Tb<sup>3+</sup>-Bipyridinedicarboxamide Complexes
Photoluminescent lanthanide complexes of Eu3+ and Tb3+ as central atoms and N6,N6’-diisopropyl-[2,2′-bipyridine]-6,6′-dicarboxamide as ligand were synthesized. The structure of these complexes was established by single-crystal X-ray diffraction, mass spectrometry, 1H and 13C nuclear magnetic resonance, ultraviolet-visible, infrared spectroscopy, and thermogravimetry. Bipyridinic ligands provide formation of coordinatively saturated complexes of lanthanide ions and strong photoluminescence (PL). The Eu3+- and Tb3+-complexes exhibit PL emission in the red and green regions observed at a 340 nm excitation. The quantum yield for the complexes was revealed to be 36.5 and 12.6% for Tb3+- and Eu3+-complexes, respectively. These lanthanide compounds could be employed as photoluminescent solid-state compounds and as emitting fillers in polymer (for example, polyethylene glycol) photoluminescent materials
Re(I) Complexes as Backbone Substituents and Cross-Linking Agents for Hybrid Luminescent Polysiloxanes and Silicone Rubbers
This study focuses on the synthesis of hybrid luminescent polysiloxanes and silicone rubbers grafted by organometallic rhenium(I) complexes using Cu(I)-catalyzed azido-alkyne cycloaddition (CuAAC). The design of the rhenium(I) complexes includes using a diimine ligand to create an MLCT luminescent center and the introduction of a triple C≡C bond on the periphery of the ligand environment to provide click-reaction capability. Poly(3-azidopropylmethylsiloxane-co-dimethylsiloxane) (N3-PDMS) was synthesized for incorporation of azide function in polysiloxane chain. [Re(CO)3(MeCN)(5-(4-ethynylphenyl)-2,2′-bipyridine)]OTf (Re1) luminescent complex was used to prepare a luminescent copolymer with N3-PDMS (Re1-PDMS), while [Re(CO)3Cl(5,5′-diethynyl-2,2′-bipyridine)] (Re2) was used as a luminescent cross-linking agent of N3-PDMS to obtain luminescent silicone rubber (Re2-PDMS). The examination of photophysical properties of the hybrid polymer materials obtained show that emission profile of Re(I) moiety remains unchanged and metallocenter allows to control the creation of polysiloxane-based materials with specified properties
Modified silicone rubber for fabrication and contacting of flexible suspended membranes of n-/p-GaP nanowires with a single-walled carbon nanotube transparent contact
Rubber materials are the key components of flexible optoelectronic devices, especially for the light-emitting diodes based on arrays of inorganic nanowires (NWs). This paper reports on polydimethylsiloxane-graft-polystyrene (PDMS-St) as a new flexible substrate of GaP NW array structures. The NWs were encapsulated by the newly introduced G-coating method to substitute the inefficient mainstream spin-coating. To further exploit the flexibility and the stretchability of the NW/PDMS-St structures, the ferrocenyl-containing polymethylhydrosiloxane was synthesized and successfully used as an electrode for the NWs. In order to make an alternative highly efficient transparent electrode, a new application of conductive single-walled carbon nanotubes was demonstrated. The novel materials and methods demonstrated unsurpassed mechanical stability of the fabricated flexible electronic devices.Peer reviewe