22 research outputs found
Multipole (E1, M1, E2, M2) transition wavelengths and rates between states with n<= 6 in heliumlike carbon, nitrogen, oxygen, neon, silicon, and argon
Transition wavelengths and rates are given for E1, E2, M1, and M2 transitions
between singlet and triplet S, P, D, and F states in heliumlike ions of
astrophysical interest: carbon, nitrogen, oxygen, neon, silicon, and argon. All
possible transitions between states with n <= 6 are considered. Wave functions
and energies are calculated using the relativistic configuration-interaction
(CI) method including both Coulomb and Breit interactions. For transitions to
the ground state, the present theoretical wavelengths agree to five digits with
precise measurements.Comment: 8 pages of text 97 pages of tables submitted to Atomic & Data Nuclear
Datable
Two-photon E1M1 decay of 2 3P0 states in heavy heliumlike ions
Two-photon E1M1 transition rates are evaluated for heliumlike ions with
nuclear charges in the range Z = 50-94. The two-photon rates modify previously
published lifetimes/transition rates of 2 3P0 states. For isotopes with nuclear
spin I not equal 0, where hyperfine quenching dominates the 2 3P0 decay,
two-photon contributions are significant; for example, in heliumlike 187 Os the
two-photon correction is 3% of the total rate. For isotopes with I= 0, where
the 2 3P0 decay is unquenched, the E1M1 corrections are even more important
reaching 60% for Z=94. Therefore, to aid in the interpretation of experiments
on hyperfine quenching in heliumlike ions and to provide a more complete
database for unquenched transitions, a knowledge of E1M1 rates is important.Comment: 6 pages, 3 figures, 3 table
Relativistic many-body calculations of electric-dipole matrix elements, lifetimes and polarizabilities in rubidium
Electric-dipole matrix elements for ns-n'p, nd-n'p, and 6d-4f transitions in
Rb are calculated using a relativistic all-order method. A third-order
calculation is also carried out for these matrix elements to evaluate the
importance of the high-order many-body perturbation theory contributions. The
all-order matrix elements are used to evaluate lifetimes of ns and np levels
with n=6, 7, 8 and nd levels with n=4, 5, 6 for comparison with experiment and
to provide benchmark values for these lifetimes. The dynamic polarizabilities
are calculated for ns states of rubidium. The resulting lifetime and
polarizability values are compared with available theory and experiment.Comment: 8 pages, 2 figure
Forbidden transitions in the helium atom
Nonrelativistically forbidden, single-photon transition rates between low
lying states of the helium atom are rigorously derived within quantum
electrodynamics theory. Equivalence of velocity and length gauges, including
relativistic corrections is explicitly demonstrated. Numerical calculations of
matrix elements are performed with the use of high precision variational wave
functions and compared to former results.Comment: 11 pages, 1 figure, submitted to Phys. Rev.
High-precision determination of transition amplitudes of principal transitions in Cs from van der Waals coefficient C_6
A method for determination of atomic dipole matrix elements of principal
transitions from the value of dispersion coefficient C_6 of molecular
potentials correlating to two ground-state atoms is proposed. The method is
illustrated on atomic Cs using C_6 deduced from high-resolution Feshbach
spectroscopy. The following reduced matrix elements are determined < 6S_{1/2}
|| D || 6P_{1/2} > =4.5028(60) |e| a0 and
=6.3373(84) |e| a0 (a0= 0.529177 \times 10^{-8} cm.) These matrix elements are
consistent with the results of the most accurate direct lifetime measurements
and have a similar uncertainty. It is argued that the uncertainty can be
considerably reduced as the coefficient C_6 is constrained further.Comment: 4 pages; 3 fig
Measurement of the 6s - 7p transition probabilities in atomic cesium and a revised value for the weak charge Q_W
We have measured the 6s - 7p_{1/2,3/2} transition probabilities in atomic
cesium using a direct absorption technique. We use our result plus other
previously measured transition rates to derive an accurate value of the vector
transition polarizability \beta and, consequently, re-evaluate the weak charge
Q_W. Our derived value Q_W=-72.65(49) agrees with the prediction of the
standard model to within one standard deviation.Comment: 4 pages, 2 figure
Accurate spline solutions of the Dirac equation with parity-nonconserving potential
The complete system of the B-spline solutions for the Dirac equation with the
parity-nonconserving (PNC) weak interaction effective potential is obtained.
This system can be used for the accurate evaluation of the radiative
corrections to the PNC amplitudes in the multicharged ions and neutral atoms.
The use of the scaling procedure allows for the evaluation of the PNC matrix
elements with relative accuracy .Comment: 7 page
Optimizing the fast Rydberg quantum gate
The fast phase gate scheme, in which the qubits are atoms confined in sites
of an optical lattice, and gate operations are mediated by excitation of
Rydberg states, was proposed by Jaksch et al. Phys. Rev. Lett. 85, 2208 (2000).
A potential source of decoherence in this system derives from motional heating,
which occurs if the ground and Rydberg states of the atom move in different
optical lattice potentials. We propose to minimize this effect by choosing the
lattice photon frequency \omega so that the ground and Rydberg states have the
same frequency-dependent polarizability \alpha(omega). The results are
presented for the case of Rb.Comment: 5 pages, submitted to PR
Application of B-splines to determining eigen-spectrum of Feshbach molecules
The B-spline basis set method is applied to determining the rovibrational
eigen-spectrum of diatomic molecules. A particular attention is paid to a
challenging numerical task of an accurate and efficient description of the
vibrational levels near the dissociation limit (halo-state and Feshbach
molecules). Advantages of using B-splines are highlighted by comparing the
performance of the method with that of the commonly-used discrete variable
representation (DVR) approach. Several model cases, including the Morse
potential and realistic potentials with 1/R^3 and 1/R^6 long-range dependence
of the internuclear separation are studied. We find that the B-spline method is
superior to the DVR approach and it is robust enough to properly describe the
Feshbach molecules. The developed numerical method is applied to studying the
universal relation of the energy of the last bound state to the scattering
length. We numerically illustrate the validity of the quantum-defect-theoretic
formulation of such a relation for a 1/R^6 potential.Comment: submitted to can j phys: Walter Johnson symposu
Combined effect of coherent Z exchange and the hyperfine interaction in atomic PNC
The nuclear spin-dependent parity nonconserving (PNC) interaction arising
from a combination of the hyperfine interaction and the coherent,
spin-independent, PNC interaction from Z exchange is evaluated using many-body
perturbation theory. For the 6s-7s transition in 133Cs, we obtain a result that
is about 40% smaller than that found previously by Bouchiat and Piketty [Phys.
Lett. B 269, 195 (1991)]. Applying this result to 133Cs, leads to an increase
in the experimental value of nuclear anapole moment and exacerbates differences
between constraints on PNC meson coupling constants obtained from the Cs
anapole moment and those obtained from other nuclear parity violating
experiments. Nuclear spin-dependent PNC dipole matrix elements, including
contributions from the combined weak-hyperfine interaction, are also given for
the 7s-8s transition in 211Fr and for transitions between ground-state
hyperfine levels in K, Rb, Cs, Ba+, Au, Tl, Fr, and Ra+.Comment: Revtex4 preprint 19 pages 4 table
