82 research outputs found

    Steering the Climate System: Using Inertia to Lower the Cost of Policy

    Get PDF
    Conventional wisdom holds that the efficient way to limit warming to a chosen level is to price carbon emissions at a rate that increases exponentially. We show that this “Hotelling” tax on carbon emissions is actually inefficient. The least-cost policy path takes advantage of the climate system’s inertia by growing more slowly than exponentially. Carbon dioxide temporarily overshoots the steady-state level consistent with the temperature limit, and the efficient carbon tax follows an inverse-U-shaped path. Economic models that assume exponentially increasing carbon taxes are overestimating the minimum cost of limiting warming, overestimating the efficient near-term carbon tax, and overvaluing technologies that mature sooner

    Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection

    Get PDF
    The potential for ischemic preconditioning to reduce infarct size was first recognized more than 30 years ago. Despite extension of the concept to ischemic postconditioning and remote ischemic conditioning and literally thousands of experimental studies in various species and models which identified a multitude of signaling steps, so far there is only a single and very recent study, which has unequivocally translated cardioprotection to improved clinical outcome as the primary endpoint in patients. Many potential reasons for this disappointing lack of clinical translation of cardioprotection have been proposed, including lack of rigor and reproducibility in preclinical studies, and poor design and conduct of clinical trials. There is, however, universal agreement that robust preclinical data are a mandatory prerequisite to initiate a meaningful clinical trial. In this context, it is disconcerting that the CAESAR consortium (Consortium for preclinicAl assESsment of cARdioprotective therapies) in a highly standardized multi-center approach of preclinical studies identified only ischemic preconditioning, but not nitrite or sildenafil, when given as adjunct to reperfusion, to reduce infarct size. However, ischemic preconditioning—due to its very nature—can only be used in elective interventions, and not in acute myocardial infarction. Therefore, better strategies to identify robust and reproducible strategies of cardioprotection, which can subsequently be tested in clinical trials must be developed. We refer to the recent guidelines for experimental models of myocardial ischemia and infarction, and aim to provide now practical guidelines to ensure rigor and reproducibility in preclinical and clinical studies on cardioprotection. In line with the above guideline, we define rigor as standardized state-of-the-art design, conduct and reporting of a study, which is then a prerequisite for reproducibility, i.e. replication of results by another laboratory when performing exactly the same experiment

    Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign

    Get PDF
    Abstract: In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M ⊙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87’s spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Escape from Third-Best: Rating Emissions for Intensity Standards

    No full text
    An increasingly common type of environmental policy instrument regulates the carbon intensity of transportation and electricity markets. In order to extend the policy's scope beyond point-of-use emissions, regulators assign each potential fuel an emission intensity rating for use in calculating compliance. I show that welfare-maximizing ratings do not generally coincide with the best estimates of actual emissions. In fact, the regulator can achieve a higher level of welfare by properly selecting the emission ratings than possible by selecting only the level of the standard. Moreover, a fuel's optimal rating can actually decrease when its estimated emission intensity increases. Numerical simulations of the California Low-Carbon Fuel Standard suggest that when recent scientific information increased the estimated emissions from conventional ethanol, regulators should have lowered ethanol's rating (making it appear less emission-intensive) so that the fuel market would clear with a lower quantity.12 month embargo; published online: 24 February 2016This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Green Expectations: Current Effects of Anticipated Carbon Pricing

    No full text
    I report evidence that an anticipated strengthening of environmental policy increased emissions. I find that the breakdown of the U.S. Senate's 2010 climate effort generated positive excess returns in coal futures markets. This response appears to be driven by an increase in coal storage. The proposed legislation aimed to reduce U.S. greenhouse gas emissions after 2013, but the legislative process itself may have increased emissions by over 12 million tons of carbon dioxide leading up to April 2010.University of Arizona's Renewable Energy Network24 month embargo; Published online: 17 July 2017This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Replication data for: Green Expectations: Current Effects of Anticipated Carbon Pricing

    No full text
    Review of Economics and Statistics: Forthcomin

    Escape from Third-Best: Rating Emissions for Intensity Standards

    No full text
    An increasingly common type of environmental policy instrument limits the carbon intensity of transportation and electricity markets. In order to extend the policy's scope beyond point-of-use emissions, regulators assign each competing fuel an emission intensity rating for use in calculating compliance. I show that welfare-maximizing ratings do not generally coincide with the best estimates of actual emissions. In fact, the regulator can achieve a higher level of welfare by manipulating the emission ratings than by manipulating the level of the standard. Moreover, a fuel's optimal rating can actually decrease when its estimated emission intensity increases. Numerical simulations of the California Low-Carbon Fuel Standard suggest that when recent scientific information suggested greater emissions from conventional ethanol, regulators should have lowered ethanol's rating (making it appear less emission-intensive) so that the fuel market would clear with a lower quantity
    corecore